Сейчас процесс принимает необратимый характер, раскручивается положительная обратная связь по принципу «чем хуже, тем больше»: происходит «отбор по тупости» – уже второе поколение тупых профессоров преподает студентам и занимается отбором преподавателей на кафедры университетов – отбирают таких же, как сами.
Вот как описывает процесс этого отбора навидавшийся Арнольд в одной из своих книг:
«Рискуя быть понятым одними только математиками, я приведу… примеры ответов лучших кандидатов на профессорскую должность математика в университете в Париже весной 2002 года (на каждое место претендовало 200 человек).
Кандидат преподавал линейную алгебру в разных университетах уже несколько лет, защитил диссертацию и опубликовал с десяток статей в лучших математических журналах Франции.
Отбор включает собеседование, где кандидату предлагаются всегда элементарные, но важные вопросы (уровня вопроса «Назовите столицу Швеции», если бы предметом была география).
Итак, я спросил: «Какова сигнатура квадратичной формы xy?»
Кандидат потребовал положенные ему на раздумье 15 минут, после чего сказал: «В моём компьютере в Тулузе у меня есть рутина (программа), которая за час-другой могла бы узнать, сколько будет плюсов и сколько минусов в нормальной форме. Разность этих двух чисел и будет сигнатурой – но ведь вы даёте только 15 минут, да без компьютера, так что ответить я не могу, эта форма ху уж слишком сложна».
Для неспециалистов поясню, что, если бы речь шла о зоологии, то этот ответ был бы аналогичен такому: «Линней перечислил всех животных, но является ли берёза млекопитающей или нет, без книги ответить не могу».
Следующий кандидат оказался специалистом по «системам эллиптических уравнений в частных производных» (полтора десятка лет после защиты диссертации и более двадцати опубликованных работ).
Этого я спросил: «Чему равен лапласиан от функции 1/r в трёхмерном евклидовом пространстве?»
Ответ (через обычные 15 минут) был для меня поразительным; «Если бы r стояло в числителе, а не в знаменателе, и производная требовалась бы первая, а не вторая, то я бы за полчаса сумел посчитать её, а так – вопрос слишком труден».
Поясню, что вопрос был из теории эллиптических уравнений типа вопроса «Кто автор «Гамлета»?» на экзамене по английской литературе. Пытаясь помочь, я задал ряд наводящих вопросов (аналогичных вопросам об Отелло и об Офелии): «Знаете ли вы, в чём состоит закон Всемирного тяготения? Закон Кулона? Как они связаны с лапласианом? Какое у уравнения Лапласа фундаментальное решение?»
Но ничего не помогало: ни Макбет, ни Король Лир не были известны кандидату, если бы шла речь о литературе.
Наконец председатель экзаменационной комиссии объяснил мне, в чём дело: «Ведь кандидат занимался не одним эллиптическим уравнением, а их системами, а ты спрашиваешь его об уравнении Лапласа, которое