Mantle Convection and Surface Expressions. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119528593
Скачать книгу
doi:10.1029/2007JB005169.

      46 Lau, H. C. P., J. X. Mitrovica, J. Austermann, O. Crawford, D. Al‐Attar, & K. Latychev (2016). Inferences of mantle viscosity based on ice age data sets: Radial structure. Journal of Geophysical Research, 123, 7237–7252, doi:https://doi.org/10.1029/2018JB015740.

      47 Lau, H. C. P., J. X. Mitrovica, J. L. Davis, J. Tromp, H.‐Y. Yang, & D. Al‐Attar (2017). Tidal tomography constrains Earth’s deep‐mantle buoyancy. Nature, 551, 321–326, doi:10.1038/nature24452.

      48 Li, X.‐D., & B. Romanowicz (1995). Comparison of global waveform inversions with and without considering cross‐branch modal coupling. Geophysical Journal International, 121(3), 695–709, doi:10.1111/j.1365‐246X.1995.tb06432.x.

      49 Liu, X., & S. Zhong (2015). The long‐wavelength geoid from three‐dimensional spherical models of thermal and thermochemical mantle convection. Journal of Geophysical Research: Solid Earth, 120(6), 4572–4596, doi:10.1002/2015JB012016.

      50 Liu, X., & S. Zhong (2016). Constraining mantle viscosity structure for a thermochemical mantle using the geoid observation. Geochemistry, Geophysics, Geosystems, 17(3), 895–913, doi:10.1002/2015GC006161.

      51 Lourenço, D. L., & M. L. Rudolph (in review). Shallow lower mantle viscosity modulates the pattern of mantle structure, in review at Proceedings of the National Academy of Sciences.

      52 Malinverno, A. (2002). Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem. Geophysical Journal International, 151(3), 675–688, doi:10.1046/j.1365‐246X.2002.01847.x.

      53 Malinverno, A., & V. A. Briggs (2004). Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes. Geophysics, 69(4), 1005–1016, doi:10.1190/1.1778243.

      54 Mao, W., & S. Zhong (2018). Slab stagnation due to a reduced viscosity layer beneath the mantle transition zone. Nature Geoscience, 11(11), 876, doi:10.1038/s41561‐018‐0225‐2.

      55 Mao, W., & S. Zhong (2019). Controls on global mantle convective structures and their comparison with seismic models. Journal of Geophysical Research: Solid Earth, doi:10.1029/2019JB017918.

      56 Marquardt, H., & L. Miyagi (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience, 8(4), 311–314, doi:10.1038/ngeo2393.

      57 Masters, G., S. Johnson, G. Laske, H. Bolton, & J. H. Davies (1996). A Shear‐Velocity Model of the Mantle [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 354(1711), 1385–1411, doi:10.1098/rsta.1996.0054.

      58 Masters, G., G. Laske, H. Bolton, & A. Dziewonski (2000). The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure. In Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, vol. 117, edited by S.‐i. Karato, A. M. Forte, R. Lieberman, G. Masters, & L. Stixrude, pp. 63–87, American Geophysical Union, Washington, D. C.

      59 Matthews, K. J., K. T. Maloney, S. Zahirovic, S. E. Williams, M. Seton, & R. D. Müller (2016). Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146, 226–250, doi:10.1016/j.gloplacha.2016.10.002.

      60 McNamara, A. K., & S. Zhong (2004). Thermochemical structures within a spherical mantle: Superplumes or piles? J. Geophys. Res., 109(B7), B07,402, doi:10.1029/2003JB002847.

      61 McNamara, A. K., & S. Zhong (2005). Thermochemical structures beneath Africa and the Pacific Ocean. Nature, 437(7062), 1136–1139, doi:10.1038/nature04066.

      62 Milne, G. A., J. X. Mitrovica, & A. M. Forte (1998). The sensitivity of glacial isostatic adjustment predictions to a low‐viscosity layer at the base of the upper mantle. Earth and Planetary Science Letters, 154(1), 265–278, doi:10.1016/S0012‐821X(97)00191‐X.

      63 Mitrovica, J. X., & A. M. Forte (1997). Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observables. Journal of Geophysical Research: Solid Earth, 102(B2), 2751–2769, doi:10.1029/96JB03175.

      64 Mitrovica, J. X., & A. M. Forte (2004). A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth and Planetary Science Letters, 225(1–2), 177–189, doi:10.1016/j.epsl.2004.06.005.

      65 Morra, G., D. A. Yuen, L. Boschi, P. Chatelain, P. Koumoutsakos, & P. J. Tackley (2010). The fate of the slabs interacting with a density/viscosity hill in the mid‐mantle. Physics of the Earth and Planetary Interiors, 180(3‐4), 271–282, doi:10.1016/j.pepi.2010.04.001.

      66 Moulik, P., & G. Ekström (2014). An anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long‐period waveforms. Geophysical Journal International, 199(3), 1713–1738, doi:10.1093/gji/ggu356.

      67 Moulik, P., & G. Ekström (2016). The relationships between large‐scale variations in shear velocity, density, and compressional velocity in the Earth’s mantle. Journal of Geophysical Research (Solid Earth), 121(4), 2737–2771, doi:10.1002/2015JB012679.

      68 Mégnin, C., H.‐P. Bunge, B. Romanowicz, & M. A. Richards (1997). Imaging 3‐D spherical convection models: What can seismic tomography tell us about mantle dynamics? Geophysical Research Letters, 24(11). 1299–1302, doi:10.1029/97GL01256.

      69 Nelson, P. L., & S. P. Grand (2018). Lower‐mantle plume beneath the Yellowstone hotspot revealed by core waves, Nature Geoscience, 11(4), 280–284, doi:10.1038/s41561‐018‐0075‐y.

      70 Obayashi, M., J. Yoshimitsu, G. Nolet, Y. Fukao, H. Shiobara, H. Sugioka, H. Miyamachi, & Y. Gao (2013). Finite frequency whole mantle P wave tomography: Improvement of subducted slab images. Geophysical Research Letters, 40(21), 2013GL057,401–5657, doi:10.1002/2013GL057401.

      71 Panasyuk, S. V., & B. H. Hager (1998). A model of transformational superplasticity in the upper mantle. Geophysical Journal International, 133(3), 741–755, doi:10.1046/j.1365‐246X.1998.00539.x.

      72 Puster, P., & T. H. Jordan (1994). Stochastic analysis of mantle convection experiments using two‐point correlation functions. Geophysical Research Letters, 21(4), 305–308, doi:10.1029/93GL02934.

      73 Puster, P., T. H. Jordan, & B. H. Hager (1995). Characterization of mantle convection experiments using two‐point correlation functions. Journal of Geophysical Research: Solid Earth, 100(B4), 6351–6365, doi:10.1029/94JB03268.

      74 Ricard, Y., M. Richards, C. Lithgow‐Bertelloni, & Y. Le Stunff (1993). A geodynamic model of mantle density heterogeneity. J. Geophys. Res., 98(B12), 21,895, doi:10.1029/93JB02216.

      75 Richards, M. A., & B. H. Hager (1984). Geoid anomalies in a dynamic Earth, Journal of Geophysical Research: Solid Earth, 89(B7), 5987–6002, doi:10.1029/JB089iB07p05987.

      76 Richards, M. A., & B. H. Hager (1989). Effects of lateral viscosity variations on long‐wavelength geoid anomalies and topography. J. Geophys. Res., 94(B8), 10,299, doi:10.1029/JB094iB08p10299.

      77 Rickers, F., A. Fichtner, & J. Trampert (2013). The Iceland‐Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full‐waveform inversion. Earth and Planetary Science Letters, 367, 39–51.

      78 Ries, J., S. Bettadpur, R. Eanes, Z. Kang, U. Ko, C. McCullough, P. Nagel, N. Pie, S. Poole, T. Richter, H. Save, & B. Tapley (2016). Development and Evaluation of the Global Gravity Model GGM05. Tech. Rep. CSR‐16‐02, The University of Texas at Austin, Center for Space Research.

      79 Rudolph, M. L., & S. Zhong (2013). Does quadrupole stability imply LLSVP fixity? Nature, 503(7477), E3–E4, doi:doi:10.1038/nature12792.

      80 Rudolph, M. L., & S. J. Zhong (2014). History and dynamics of net rotation of the mantle and lithosphere. Geochemistry, Geophysics, Geosystems, 15(9), 3645–3657.

      81 Rudolph, M. L., V. Lekic, & C. Lithgow‐Bertelloni (2015). Viscosity jump in Earth’s mid‐mantle,