24 24. Melero, J.A., Iglesias, J., and Garcia, A. (2012). Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy & Environmental Science 5: 7393–7420.
25 25. Holkar, C.R., Jain, S.S., Jadhav, A.J., and Pinjari, D.V. (2018). Valorization of keratin based waste. Process Safety and Environmental Protection 115: 85–98.
26 26. Sivasamy, A., Cheah, K.Y., Fornasiero, P. et al. (2009). Catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem 2 (4): 278–300.
27 27. Yaakob, Z., Mohammad, M., Alherbawi, M. et al. (2013). Overview of the production of biodiesel from waste cooking oil. Renewable and Sustainable Energy Reviews 18: 184–193.
28 28. Hess, S.K., Schunck, N.S., Goldbach, V. et al. (2017). Valorization of unconventional lipids from microalgae or tall oil via a selective dual catalysis one‐pot approach. Journal of the American Chemical Society 139 (38): 13487–13491.
29 29. Mlynarski, J. and Gut, B. (2012). Organocatalytic synthesis of carbohydrates. Chemical Society Reviews 41: 587–596.
30 30. Brethauer, S. and Wyman, C.E. (2010). Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology 101 (13): 4862–4874.
31 31. Meng, X., Pu, Y., Yoo, C.G. et al. (2017). An in‐depth understanding of biomass recalcitrance using natural poplar variants as the feedstock. ChemSusChem 10 (1): 139–150.
32 32. Renders, T., Van den Bosch, S., Koelewijn, S.F. et al. (2017). Lignin‐first biomass fractionation: the advent of active stabilisation strategies. Energy & Environmental Science 10: 1551–1557.
33 33. Van den Bosch, S., Schutyser, W., Vanholme, R. et al. (2015). Reductive lignocellulose fractionation into soluble lignin‐derived phenolic monomers and dimers and processable carbohydrate pulps. Energy & Environmental Science 8: 1748–1763.
34 34. Binder, J.B. and Raines, R.T. (2010). Fermentable sugars by chemical hydrolysis of biomass. Proceedings of the National Academy of Sciences of the United States of America 107 (10): 4516–4521.
35 35. Bodachivskyi, I., Kuzhiumparambil, U., and Williams, D.B.G. (2019). The role of the molecular formula of ZnCl2·nH2O on its catalyst activity: a systematic study of zinc chloride hydrates in the catalytic valorisation of cellulosic biomass. Catalysis Science & Technology 9: 4693–4701.
36 36. Klemm, D., Heublein, B., Fink, H.P., and Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie, International Edition 44 (22): 3358–3393.
37 37. Rinaldi, R. and Schüth, F. (2009). Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2 (12): 1096–1107.
38 38. Balat, M. and Balat, H. (2009). Recent trends in global production and utilization of bio‐ethanol fuel. Applied Energy 86 (11): 2273–2282.
39 39. Ghaffar, T., Irshad, M., Anwar, Z. et al. (2014). Recent trends in lactic acid biotechnology: a brief review on production to purification. Journal of Radiation Research and Applied Science 7: 222–229.
40 40. Hu, L., Lin, L., Wu, Z. et al. (2015). Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Applied Catalysis B: Environmental 174–175: 225–243.
41 41. Torget, R.W., Kim, J.S., and Lee, Y.Y. (2000). Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Industrial and Engineering Chemistry Research 39 (8): 2817–2825.
42 42. Lee, Y.Y., Wu, Z., and Torget, R.W. (2000). Modeling of countercurrent shrinking‐bed reactor in dilute‐acid total‐hydrolysis of lignocellulosic biomass. Bioresource Technology 71 (1): 29–39.
43 43. Zhang, H.‐J., Fan, X.‐G., Qiu, X.‐L. et al. (2014). A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw‐steam‐explosive extruder. Bioprocess and Biosystems Engineering 37 (12): 2425–2436.
44 44. Shuai, L. and Pan, X. (2012). Hydrolysis of cellulose by cellulase‐mimetic solid catalyst. Energy & Environmental Science 5: 6889–6894.
45 45. Van de Vyver, S., Peng, L., Geboers, J. et al. (2010). Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chemistry 12: 1560–1563.
46 46. Yang, Q. and Pan, X. (2016). Synthesis and application of bifunctional porous polymers bearing chloride and sulfonic acid as cellulase‐mimetic solid acids for cellulose hydrolysis. Bioenergy Research 9 (2): 578–586.
47 47. Kaufman Rechulski, M.D., Käldström, M., Richter, U. et al. (2015). Mechanocatalytic depolymerization of lignocellulose performed on hectogram and kilogram scales. Industrial and Engineering Chemistry Research 54 (16): 4581–4592.
48 48. Li, C. and Zhao, Z.K. (2007). Efficient acid‐catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis and Catalysis 349 (11–12): 1847–1850.
49 49. Bodachivskyi, I., Kuzhiumparambil, U., and Williams, D.B.G. (2019). High yielding acid‐catalysed hydrolysis of cellulosic polysaccharides and native biomass into low molecular weight sugars in mixed ionic liquid systems. ChemistryOpen 8 (10): 1316–1324.
50 50. Binder, J.B. and Raines, R.T. (2009). Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. Journal of the American Chemical Society 131 (5): 1979–1985.
51 51. Su, Y., Brown, H.M., Huang, X. et al. (2009). Single‐step conversion of cellulose to 5‐hydroxymethylfurfural (HMF), a versatile platform chemical. Applied Catalysis A: General 361 (1–2): 117–122.
52 52. Ding, Z.‐D., Shi, J.‐C., Xiao, J.‐J. et al. (2012). Catalytic conversion of cellulose to 5‐hydroxymethyl furfural using acidic ionic liquids and co‐catalyst. Carbohydrate Polymers 90 (2): 792–798.
53 53. Van Nguyen, C., Lewis, D., Chen, W.‐H. et al. (2016). Combined treatments for producing 5‐hydroxymethylfurfural (HMF) from lignocellulosic biomass. Catalysis Today 278: 344–349.
54 54. Bodachivskyi, I., Kuzhiumparambil, U., and Williams, D.B.G. (2020). Towards furfural from the reaction of cellulosic biomass in zinc chloride hydrate solvents. Industrial Crops and Products 146 https://doi.org/10.1016/j.indcrop.2020.112179.
55 55. Hu, S., Zhang, Z., Zhou, Y. et al. (2009). Direct conversion of inulin to 5‐hydroxymethylfurfural in biorenewable ionic liquids. Green Chemistry 11: 873–877.
56 56. Zhang, L. and Yu, H. (2013). Conversion of xylan and xylose into furfural in biorenewable deep eutectic solvent with trivalent metal chloride added. BioResources 8 (4): 6014–6025.
57 57. Bodachivskyi, I., Kuzhiumparambil, U., and Williams, D.B.G. (2020). Catalytic valorization of native biomass in a deep eutectic solvent: a systematic approach toward high‐yielding reactions of polysaccharides. ACS Sustainable Chemistry & Engineering 8 (1): 678–685.
58 58. Heinze, T., El Seoud, O.A., and Koschella, A. (2018). Cellulose activation and dissolution. In: Cellulose Derivatives (eds. T. Heinze, O.A. El Seoud and A. Koschella), 173–257. Cham: Springer.
59 59. Brière, R., Loubet, P., Glogic, E. et al. (2018). Life cycle assessment of the production of surface‐active alkyl polyglycosides from acid‐assisted ball‐milled wheat straw compared to the conventional production based on corn‐starch. Green Chemistry 20: 2135–2141.
60 60. Swatloski, R.P., Spear, S.K., Holbrey, J.D., and Rogers, R.D. (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society 124 (18): 4974–4975.
61 61. Zhang, Z., Song, J., and Han, B. (2017). Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chemical Reviews 117 (10): 6834–6880.
62 62. Morales‐delaRosa, S., Campos‐Martin, J.M.,