Biomass Valorization. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9783527825035
Скачать книгу
Eerkes‐Medrano, D., Thompson, R.C., and Aldridge, D.C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75: 63–82. https://doi.org/10.1016/j.watres.2015.02.012.

      6 6. Law, K.L. and Thompson, R.C. (2014). Microplastics in the seas. Science 345 (6193): 144–145. https://doi.org/10.1126/science.1254065.

      7 7. Aboudah, M. (2015). Dealing with economic sustainability challenges evolving from declining oil production in Saudi Arabia. Master thesis. Michigan Technological University.

      8 8. Campbell, C.J. (2013). Campbells Atlas of Oil and Gas Depletion. New York, NY: Springer.

      9 9. Climate Change: Vital Signs of the Planet. (2018). https://climate.nasa.gov/ (accessed 14 November 2019).

      10 10. World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100 | UN DESA Department of Economic and Social Affairs. (2017). https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed 14 November 2019).

      11 11. Anastas, P.T. and Warner, J.C. (1998). Green Chemistry Theory and Practice. New York: Oxford University Press.

      12 12. Keijer, T., Bakker, V., and Slootweg, J.C. (2019). Circular chemistry to enable a circular economy. Nature Chemistry 11 (3): 190–195. https://doi.org/10.1038/s41557-019-0226-9.

      13 13. Lanzafame, P., Centi, G., and Perathoner, S. (2014). Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low‐carbon chemical production. Chemical Society Reviews 43 (22): 7562–7580. https://doi.org/10.1039/C3CS60396B.

      14 14. Sheldon, R.A. (2016). Green chemistry and resource efficiency: towards a green economy. Green Chemistry 18 (11): 3180–3183. https://doi.org/10.1039/c6gc90040b.

      15 15. Cong, W.‐F., Jing, J., Rasmussen, J. et al. (2017). Forbs enhance productivity of unfertilised grass‐clover leys and support low‐carbon bioenergy. Scientific Reports 7 (1): 1–10, Article ID 1422. doi: https://doi.org/10.1038/s41598-017-01632-4.

      16 16. Mauser, W., Klepper, G., Zabel, F. et al. (2015). Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nature Communications 6 (1): 1–11, Article ID 8946. doi: https://doi.org/10.1038/ncomms9946.

      17 17. Woodward, F.I., Lomas, M.R., and Kelly, C.K. (2004). Global climate and the distribution of plant biomes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359 (1450): 1465–1476. https://doi.org/10.1098/rstb.2004.1525.

      18 18. Abdel‐Shafy, H.I. and Mansour, M.S.M. (2018). Solid waste issue: sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum 27 (4): 1275–1290.

      19 19. European Commission (2019). Renewable Energy: Bioenergy. http://ec.europa.eu/research/energy/index.cfm?pg=area&areaname=renewable_bio (accessed 10 November 2019).

      20 20. Obermeier, W.A., Lehnert, L.W., Kammann, C.I. et al. (2016). Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nature Climate Change 7 (2): 137–141. https://doi.org/10.1038/nclimate3191.

      21 21. Wu, L., Moteki, T., Gokhale, A.A. et al. (2016). Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1 (1): 32–58. https://doi.org/10.1016/j.chempr.2016.05.002.

      22 22. Mousdale, D.M. (2008). Biofuels: Biotechnology, Chemistry and Sustainable Development. Boca Raton, FL: CRC Press.

      23 23. Ho, D.P., Ngo, H.H., and Guo, W. (2014). A mini review on renewable sources for biofuel. Bioresource Technology 169: 742–749. https://doi.org/10.1016/j.biortech.2014.07.022.

      24 24. Rulli, M.C., Bellomi, D., Cazzoli, A. et al. (2016). The water‐land‐food nexus of first‐generation biofuels. Scientific Reports 6 (1) https://doi.org/10.1038/srep22521.

      25 25. Achinas, S. and Euverink, G.J.W. (2016). Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electronic Journal of Biotechnology 23: 44–53. https://doi.org/10.1016/j.ejbt.2016.07.006.

      26 26. Lee, W.C. and Kuan, W.C. (2015). Miscanthusas cellulosic biomass for bioethanol production. Biotechnology Journal 10 (6): 840–854. https://doi.org/10.1002/biot.201400704.

      27 27. Stoffel, R.B., Neves, P.V., Felissia, F.E. et al. (2017). Hemicellulose extraction from slash pine sawdust by steam explosion with sulfuric acid. Biomass and Bioenergy 107: 93–101. https://doi.org/10.1016/j.biombioe.2017.09.019.

      28 28. Wilkinson, S., Smart, K.A., James, S. et al. (2016). Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach. BioEnergy Research 10 (1): 146–157. https://doi.org/10.1007/s12155-016-9782-7.

      29 29. Prasetyo, J., Naruse, K., Kato, T. et al. (2011). Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnology for Biofuels 4 (1): 35. https://doi.org/10.1186/1754-6834-4-35.

      30 30. Sims, R.E., Mabee, W., Saddler, J.N. et al. (2010). An overview of second generation biofuel technologies. Bioresource Technology 101 (6): 1570–1580. https://doi.org/10.1016/j.biortech.2009.11.046.

      31 31. Pierobon, S.C., Cheng, X., Graham, P.J. et al. (2018). Emerging microalgae technology: a review. Sustainable Energy Fuels 2: 13–38. https://doi.org/10.1039/C7SE00236J.

      32 32. Koller, M., Salerno, A., Tuffner, P. et al. (2012). Characteristics and potential of micro algal cultivation strategies: a review. Journal of Cleaner Production 37: 377–388. https://doi.org/10.1016/j.jclepro.2012.07.044.

      33 33. Singh, A. and Olsen, S.I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy 88 (10): 3548–3555. https://doi.org/10.1016/j.apenergy.2010.12.012.

      34 34. Aro, E.‐M. (2015). From first generation biofuels to advanced solar biofuels. AMBIO 45 (S1): 24–31. https://doi.org/10.1007/s13280-015-0730-0.

      35 35. Moravvej, Z., Makarem, M.A., and Rahimpour, M.R. (2019). The fourth generation of biofuel. In: Second and Third Generation of Feedstocks‐The evolution of biofuels (eds. A. Basile and F. Dalena), 557–597.