89. Gogate, P.R., Tatake, P.A., Kanthale, P.M., Pandit, A.B., Mapping of sonochemical reactors: Review, analysis, and experimental verification. AIChE J., 48 (7), 1542–1560, 2002.
90. Sharma, A., Gogate, P.R., Mahulkar, A., Pandit, A.B., Modeling of hydrodynamic cavitation reactors based on orifice plates considering hydrodynamics and chemical reactions occurring in bubble. Chem. Eng. J., 143 (1–3), 201–209, 2008.
91. Patil, A., Baral, S.S., Dhanke, P., Kore, V., Biodiesel production using prepared novel surface functionalised TiO2 nano-catalyst in hydrodynamic cavitation reactor. Mater. Today Proc., 27 (1), 198–203, 2020.
92. Khan, I.A., Prasad, N., Pal, A., Yadav, A.K., Efficient production of biodiesel from Cannabis sativa oil using intensified transesterification (hydrodynamic cavitation) method. Energy Sources, Part A Recover. Util. Environ. Eff., 1–10, 2019.
93. Bargole, S., George, S., Saharan, V.K., Improved rate of transesterification reaction in biodiesel synthesis using hydrodynamic cavitating devices of high throat perimeter to flow area ratios. Chem. Eng. Process. Intensif., 139, 1–13, 2019.
94. Chitsaz, H., Omidkhah, M., Ghobadian, B., Ardjmand, M., Optimization of hydrodynamic cavitation process of biodiesel production by response surface methodology. J. Environ. Chem. Eng., 6 (2), 2262–2268, 2018.
95. Kolhe, N.S., Gupta, A.R., Rathod, V.K., Production and purification of biodiesel produced from used frying oil using hydrodynamic cavitation. Resour. Technol., 3 (2), 198–203, 2017.
96. Bokhari, A., Chuah, L.F., Yusup, S., Klemeš, J.J., Akbar, M.M., Kamil, R.N.M., Cleaner production of rubber seed oil methyl ester using a hydrodynamic cavitation: optimisation and parametric study. J. Clean. Prod., 136, 31–41, 2016.
97. Mohod, A. V., Gogate, P.R., Viel, G., Firmino, P., Giudici, R., Intensification of biodiesel production using hydrodynamic cavitation based on high speed homogenizer. Chem. Eng. J., 316, 751–757, 2017.
98. Chuah, L.F., Yusup, S., Abd Aziz, A.R., Bokhari, A., Abdullah, M.Z., Cleaner production of methyl ester using waste cooking oil derived from palm olein using a hydrodynamic cavitation reactor. J. Clean. Prod., 112, 4505–4514, 2016.
99. Chuah, L.F., Yusup, S., Abd Aziz, A.R., Bokhari, A., Klemeš, J.J., Abdullah, M.Z., Intensification of biodiesel synthesis from waste cooking oil (Palm Olein) in a Hydrodynamic Cavitation Reactor: Effect of operating parameters on methyl ester conversion. Chem. Eng. Process. Process Intensif., 95, 235–240, 2015.
100. Gole, V.L., Naveen, K.R., Gogate, P.R., Hydrodynamic cavitation as an efficient approach for intensification of synthesis of methyl esters from sustainable feedstock. Chem. Eng. Process. Process Intensif., 71, 70–76, 2013.
101. Pal, A., Verma, A., Kachhwaha, S.S., Maji, S. Biodiesel production through hydrodynamic cavitation and performance testing. Renew. Energy, 35 (3), 619–624, 2010.
102. Pawar, S.K., Mahulkar, A.V., Pandit, A.B., Roy, K., Moholkar, V.S., Sonochemical effect induced by hydrodynamic cavitation: Comparison of venturi/orifice flow geometries. AIChE J., 63 (10), 4705–4716, 2017.
103. Karthikeyan, M., Renganathan, S., Baskar, G., Production of biodiesel from waste cooking oil using MgMoO4–supported TiO2 as a heterogeneous catalyst. Energy Sources, Part A Recover. Util. Environ. Eff., 39 (21), 2053–2059, 2017.
104. Kanthale, P.M., Gogate, P.R., Pandit, A.B., Wilhelm, A.M., Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: Cluster approach. Ultrason. Sonochem., 12 (6), 441–452, 2005.
105. Keller, J.B., Miksis, M.J., Bubble oscillations of large amplitude. J. Acoust. Soc. Am., 68, 628–633, 1980.
106. Krishnan, S.J., Dwivedi, P., Moholkar, V.S., Numerical investigation into the chemistry induced by hydrodynamic cavitation. Ind. Eng. Chem. Res., 45, 1493–1504, 2006.
107. Dong, Z., Delacour, C., Carogher, K.M., Udepurkar, A.P., Kuhn, S., Continuous ultrasonic reactors: Design, mechanism and application. Materials (Basel), 13 (2), 344, 2020.
108. Delacour, C., Stephens, D., Lutz, C., Mettin, R., Kuhn, S., Design and characterization of a scaled-up ultrasonic flow reactor. Org. Process Res. Dev., 0–36, 2020.
109. Verhaagen, B., Liu, Y., Pérez, A.G., Castro-Hernandez, E., Fernandez Rivas, D., Scaled-up sonochemical microreactor with increased efficiency and reproducibility. ChemistrySelect, 1 (2), 136–139, 2016.
110. Jamshidi, R., Rossi, D., Saffari, N., Gavriilidis, A., Mazzei, L., Investigation of the Effect of Ultrasound Parameters on Continuous Sonocrystallization in a Millifluidic Device. Cryst. Growth Des., 16 (8), 4607–4619, 2016.
111. Johansson, O., Lofqvist, T., Pamidi, T.R.K. Design of high-intensity ultrasound reactor. IEEE Int. Ultrason. Symp. IUS, 2017.
112. Bashir, T.A., Soni, A.G., Mahulkar, A. V., Pandit, A.B. The CFD driven optimisation of a modified venturi for cavitational activity. Can. J. Chem. Eng., 89 (6), 1366–1375, 2011.
113. Prabhu, A. V., Gogate, P.R., Pandit, A.B. Optimization of multiple-frequency sonochemical reactors. Chem. Eng. Sci., 59 (22–23), 4991–4998, 2004.
114. Gogate, P.R., Mujumdar, S., Pandit, A.B., Large-scale sonochemical reactors for process intensification: Design and experimental validation. J. Chem. Technol. Biotechnol., 78 (6), 685–693, 2003.
115. Moholkar, V.S., Mechanistic optimization of a dual frequency sonochemical reactor. Chem. Eng. Sci., 64 (24), 5255–5267, 2009.
116. Kumar, A., Gogate, P.R., Pandit, A.B., Mapping the efficacy of new designs for large scale sonochemical reactors. Ultrason. Sonochem., 14 (5), 538–544, 2007.
117. Kanthale, P.M., Gogate, P.R., Pandit, A.B, Modeling aspects of dual frequency sonochemical reactors. Chem. Eng. J., 127 (1–3), 71–79, 2007.
118. Gogate, P.R., Pandit, A.B., Sonochemical reactors: Scale up aspects. Ultrason. Sonochem., 11 (3–4), 105–117, 2004.
119. He, B., and Van Gerpen, J.H., Application of ultrasonication in transesterification processes for biodiesel production. Biofuels, 3 (4), 479–488, 2012.
120. Maddikeri, G.L., Gogate, P.R., Pandit, A.B., Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil. Fuel, 137, 285–292, 2014.
121. Manickam, S., Arigela, V.N.D., Gogate, P.R. Intensification of synthesis of biodiesel from palm oil using multiple frequency ultrasonic flow cell. Fuel Process. Technol., 128, 388–393, 2014.
122. Murillo, G., He, Y., Yan, Y., Sun, J., Bartocci, P., Ali, S.S., Fantozzi, F., Scaled-up biodiesel synthesis from Chinese Tallow Kernel oil catalyzed by Burkholderia cepacia lipase through ultrasonic assisted technology: A non-edible and alternative source of bio energy. Ultrason. Sonochem., 58 (May), 104658, 2019.
*Corresponding author: [email protected]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте