Getting Gold: A Practical Treatise for Prospectors, Miners and Students. J. C. F. Johnson. Читать онлайн. Newlib. NEWLIB.NET

Автор: J. C. F. Johnson
Издательство: Bookwire
Серия:
Жанр произведения: Языкознание
Год издания: 0
isbn: 4057664579058
Скачать книгу
can be got from a ton of your lode, take a number of samples from different parts, both length and breadth. The drillings from the blasting bore-holes collected make the best test. When finely triturated weigh off one or two pounds, place in a black iron pan (it must not be tinned), with 4 ozs. of mercury, 4 ozs. salt, 4 ozs. soda, and about half a gallon of boiling water; then, with a stick, stir the pulp constantly, occasionally swirling the dish as in panning off, till you feel certain that every particle of the gangue has come in contact with the mercury; then carefully pan off into another dish so as to lose no mercury. Having got your amalgam clean squeeze it through a piece of chamois leather, though a good quality of new calico previously wetted will do as well. The resulting pill of hard amalgam can then be wrapped in a piece of brown paper, placed on an old shovel, and the mercury driven off over a hot fire; or a clay tobacco pipe, the mouth being stopped with clay, makes a good retort (see "Rules of Thumb," pipe and potato retorting). The residue will be retorted gold, which, on being weighed and the result multiplied by 2240 for a 1 lb. assay, or by 1120 for 2 lb., will give the amount of gold per ton which an ordinary battery might be expected to save. Thus 1 grain to the pound, 2240 lbs. to the ton, would show that the stuff contained 4 oz. 13 dwt. 8 gr. per ton.

      If there should be much base metal in your sample such as say stibnite (sulphide of antimony), a most troublesome combination to the amalgamator—instead of the formula mentioned above add to your mercury about one dwt. of zinc shavings or clippings, and to your water sufficient sulphuric acid to bring it to about the strength of vinegar (weaker, if anything, not stronger), place your material preferably in an earthenware or enamelled basin if procurable, but iron will do, and intimately mix by stirring and shaking till all particles have had an opportunity to combine with the mercury. Retort as before described. This device is my own invention.

      The only genuine test after all is the battery, and that, owing to various causes, is often by no means satisfactory. First, there is a strong, almost unconquerable temptation to select the stone, thus making the testing of a few tons give an unduly high average; but more often the trouble is the other way. The stuff is sent to be treated at some inefficient battery with worn-out boxes, shaky foundations, and uneven tables, sometimes with the plates not half amalgamated, or coated with impurities, the whole concern superintended by a man who knows as little about the treatment of auriferous quartz by the amalgamating or any other processes as a dingo does of the differential calculus. Result: 3 dwt. to the ton in the retort, 30 dwt. in the tailings, and a payable claim declared a "duffer."

      When the lode is really rich, particularly if it be carrying coarse gold, and owing to rough country, or distance, a good battery is not available, excellent results in a small way may be obtained by the somewhat laborious, but simple, process of "dollying." A dolly is a one man power single stamp battery, or rather an extra sized pestle and mortar (see "Rules of Thumb").

      Silver lodes and lodes which frequently carry more or less gold, are often found beneath the dark ironstone "blows," composed of conglomerates held together by ferric and manganic oxides; or, where the ore is galena, the surface indications will frequently be a whitish limey track sometimes extending for miles, and nodules or "slugs" of that ore will generally be found on the surface from place to place. Most silver ores are easily recognisable, and readily tested by means of the blowpipe or simple fire assay. Sometimes the silver on being tested is found to contain a considerable percentage of gold as in the great Comstock lode in Nevada. Ore from the big Broken Hill silver load, New South Wales, also contains an appreciable quantity of the more precious metal. A natural alloy of gold containing 20 per cent silver, termed electrum, is the lowest grade of the noble metal.

      Tin, lode, and stream, or alluvial, occurs only as an oxide, termed cassiterite, and yet you can well appreciate the compliment one Cornish miner pays to another whose cleverness he wishes to commend, when he says of him, "Aw, he do know tin," when you look at a representative collection of tin ores. In various shapes, from sharp-edged crystals to mammillary-shaped nuggets of wood-tin; from masses of 30 lbs. weight to a fine sand, like gunpowder, in colour black, brown, grey, yellow, red, ruby, white, and sometimes a mingling of several colours, it does require much judgment to know tin.

      Stream tin is generally associated with alluvial gold. When such is the case there is no difficulty in saving the gold if you save the tin, for the yellow metal is of much greater specific gravity. As the natural tin is an oxide, and therefore not susceptible to amalgamation, the gold can be readily separated by means of mercury.

      Lode tin sometimes occurs in similar quartz veins to those in which gold is got, and is occasionally associated with gold. Tin is also found, as at Eurieowie, in dykes, composed of quartz crystals and large scales of white mica, traversing the older slates. A similar occurrence takes place at Mount Shoobridge and at Bynoe Harbour, in the Northern Territory of South Australia; indeed, one could not readily separate the stone from these three places if it were mixed. As before stated tin will never be found far from granite, and that granite must have white mica as one of its constituents. It is seldom found in the darker coloured rocks, or in limestone country, but it sometimes occurs in gneiss, mica schist, and chlorite schist. Numerous other minerals are at times mistaken for tin, the most common of which are tourmaline or schorl, garnet, wolfram (which is a tungstate of iron with manganese), rutile or titanic acid, blackjack or zinc blende, together with magnetic, titanic, and specular iron in fine grains.

      This rough and ready mode of determining whether the ore is tin is by weight and by scratching or crushing, when, what is called the "streak" is obtained. The colour of the tin streak is whitey-grey, which, when once known, is not easily mistaken. The specific gravity is about 7.0. Wolfram, which is most like it, is a little heavier, from 7.0 to 7.5, but its streak is red, brown, or blackish-brown. Rutile is much lighter, 4.2, and the streak light-brown; tourmaline is only 3.2. Blackjack is 4.3, and its streak yellowish-white.

      I have seen several pounds weight to the dish got in some of the New South Wales shallow sinking tin-fields, and, as a rule, payable gold was also present. Fourteen years ago I told Western Australian people, when on a visit to that colony, that the neighbourhood of the Darling range would produce rich tin. Lately this had been proved to be the case, and I look forward to a great development of the tin mining industry in the south-western portion of Westralia.

      The tin "wash" in question may also contain gold, as the country rock of the neighbourhood is such as gold is usually found in.[*]

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAWgA4QDASIA AhEBAxEB/8QAHgAAAgIBBQEAAAAAAAAAAAAAAQACAwQJBQgHBgr/x