Source: Taylor and Andersson [351].
RuBisCO evolved at a time when the atmosphere of our planet was much richer in CO2 and did not contain much O2. The oxygenation of the atmosphere posed a serious challenge for RuBisCO because O2 is a competitive substrate to CO2. Binding of O2 by RuBisCO leads to an alternative reaction pathway that results in oxygenation of RuBP. This is an unproductive pathway (photorespiration) that leads to creation of 2‐phosphoglycolate (2PGA) and eventual loss of previously fixed CO2. Although several adaptations at the cellular or metabolic level exist in biology to deal with this problem, evolution has not come up with a “solution” at the molecular level, i.e. with restriction of oxygenase activity by adaptation of the enzyme itself. The inability of RuBisCO to discriminate strongly between CO2 and O2 is considered to be the reason for the utilization of very large quantities of the enzyme by photosynthetic organisms and is viewed as the primary reason for the low overall efficiency of natural photosynthesis [352–355].
3.7 Conclusions
Natural photosynthesis can show us how evolution solved the problem of converting solar to chemical energy to serve the biological needs of living organisms. The fundamental components of natural photosynthesis are conceptually the same as in any conceivable practical realization of artificial photosynthesis: light harvesting, charge separation, water oxidation, and CO2 fixation. Many of the specifics of natural photosynthesis serve as blueprints and provide inspiration for the development of synthetic systems that might be conceived as “artificial leaves” [356, 357]. The operating principles of the OEC and its smart protein matrix are preeminent examples in this respect. However, there are other aspects of natural photosynthesis that are not ideal templates to be imitated in technological applications, such as nature's utilization of CO2 to produce biomass. Research in natural photosynthesis and on the multiple questions that remain open, such as the details of water oxidation, will continue in tandem with efforts to develop artificial systems. It is hoped that insights from the former will fertilize the latter, because even if the future of artificial photosynthesis is not strictly biomimetic, it is inevitable that design principles will be shared.
References
1 1 Faunce, T.A., Lubitz, W., Rutherford, A.W. et al. (2013). Energy Environ. Sci. 6: 695–698.
2 2 Armaroli, N. and Balzani, V. (2016). Chem. Eur. J. 22: 32–57.
3 3 Lane, N. (2016). Oxygen: The Molecule that Made the World, 400. Oxford: Oxford University Press.
4 4 Blankenship, R.E. (2014). Molecular Mechanisms of Photosynthesis, 2e, 312. Chichester: Wiley.
5 5 Shevela, D. and Björn, L.O. (2017). Govindjee, Photosynthesis: Solar Energy for Life, 204. Singapore: World Scientific.
6 6 Krewald, V., Retegan, M., and Pantazis, D.A. (2016). Top. Curr. Chem. 371: 23–48.
7 7 Pantazis, D.A. (2018). ACS Catal. 8: 9477–9507.
8 8 Junge, W. (2019). Q. Rev. Biophys. 52: e1.
9 9 Wydrzynski, T.J. and Hillier, W. (2012). Molecular Solar Fuels, 553. Cambridge: The Royal Society of Chemistry.
10 10 Collings, A.F. and Critchley, C. (2005). Artificial Photosynthesis: From Basic Biology to Industrial Application, 313. Weinheim: Wiley‐VCH.
11 11 Cogdell, R.J., Gardiner, A.T., Yukihira, N., and Hashimoto, H. (2018). J. Photochem. Photobiol., A 353: 645–653.
12 12 El‐Khouly, M.E., El‐Mohsnawy, E., and Fukuzumi, S. (2017). J. Photochem. Photobiol., C 31: 36–83.
13 13 Nocera, D.G. (2017). Acc. Chem. Res. 50: 616–619.
14 14 Cox, N., Pantazis, D.A., Neese, F., and Lubitz, W. (2015). Interface Focus 5: 20150009.
15 15 Kim, D., Sakimoto, K.K., Hong, D., and Yang, P. (2015). Angew. Chem. Int. Ed. 54: 3259–3266.
16 16 Barber, J. and Tran, P.D. (2013). J. R. Soc. Interface 10: 20120984.
17 17 Tachibana, Y., Vayssieres, L., and Durrant, J.R. (2012). Nat. Photonics 6: 511–518.
18 18 Lubitz, W., Reijerse, E.J., and Messinger, J. (2008). Energy Environ. Sci. 1: 15–31.
19 19 Rappaport, F. and Diner, B.A. (2008). Coord. Chem. Rev. 252: 259–272.
20 20 Brotosudarmo, T.H.P., Prihastyanti, M.N.U., Gardiner, A.T. et al. (2014). Energy Procedia 47: 283–289.
21 21 Chen, M., Schliep, M., Willows, R.D. et al. (2010). Science 329: 1318.
22 22 Nürnberg, D.J., Morton, J., Santabarbara, S. et al. (2018). Science 360: 1210.
23 23 Green, B. and Parson, W.W. (2003). Light‐Harvesting Antennas in Photosynthesis, 516. Dordrecht: Springer.
24 24 Prince, S.M., Papiz, M.Z., Freer, A.A. et al. (1997). J. Mol. Biol. 268: 412–423.
25 25 David, L., Marx, A., and Adir, N. (2011). J. Mol. Biol. 405: 201–213.
26 26 Standfuss, J., Terwisscha van Scheltinga, A.C., Lamborghini, M., and Kühlbrandt, W. (2005). EMBO J. 24: 919–928.
27 27 Förster, T. (1948). Ann. Phys. 437: 55–75.
28 28 Redfield, A.G. (1965). Advances in Magnetic and Optical Resonance, vol. 1 (ed. J.S. Waugh), 1–32. Academic Press.
29 29 Panitchayangkoon, G., Hayes, D., Fransted, K.A. et al. (2010). Proc. Natl. Acad. Sci. U.S.A. 107: 12766.
30 30 Ishizaki, A. and Fleming, G.R. (2012). Annu. Rev. Condens. Matter Phys. 3: 333–361.
31 31 Fassioli, F., Dinshaw, R., Arpin, P.C., and Scholes, G.D. (2014). J. R. Soc. Interface 11: 20130901.
32 32 Straight, S.D., Kodis, G., Terazono, Y. et al. (2008). Nat. Nanotechnol. 3: 280–283.
33 33 Harriman, A. (2015). Chem. Commun. 51: 11745–11756.
34 34 Balzani, V., Credi, A., and Venturi, M. (2008). ChemSusChem 1: 26–58.
35 35 Newkome, G.R., Moorefield, C.N., and Vögtle, F. (2001). Dendrimers and Dendrons, 635. Weinheim: Wiley‐VCH.
36 36 Balzani, V., Ceroni, P., Maestri, M., and Vicinelli, V. (2003). Curr. Opin. Chem. Biol. 7: 657–665.
37 37 Balzani, V., Campagna, S., Denti, G. et al. (1998). Acc. Chem. Res. 31: 26–34.
38 38 McCusker, J.K. (2019). Science 363: 484.
39 39 Gust, D., Moore, T.A., and Moore, A.L. (2001). Acc. Chem. Res. 34: 40–48.
40 40 Holten, D., Bocian, D.F., and Lindsey, J.S. (2002). Acc. Chem. Res. 35: 57–69.
41 41 Choi, M.‐S., Yamazaki, T., Yamazaki, I., and Aida, T. (2004). Angew. Chem. Int. Ed. 43: 150–158.
42 42 Adronov, A., Gilat, S.L., Fréchet, J.M.J. et al. (2000). J. Am. Chem. Soc. 122: 1175–1185.
43 43 Ching Mak, C., Pomeranc, D., Sanders, J.K.M. et al. (1999). Chem. Commun.: 1083–1084.
44 44 Cotlet, M., Vosch, T., Habuchi, S. et al. (2005). J. Am. Chem. Soc. 127: 9760–9768.
45 45 Balzani, V., Bergamini, G., Ceroni, P., and Vögtle, F. (2007). Coord. Chem. Rev. 251: 525–535.
46 46 Hahn, U., Gorka, M., Vögtle, F. et al. (2002). Angew. Chem. Int. Ed. 41: 3595–3598.
47 47 Zouni, A., Witt, H.T., Kern, J. et al. (2001). Nature 409: 739–743.
48 48 Neutze, R., Wouts, R., van der Spoel, D. et al. (2000). Nature 406: 752–757.
49 49 Chapman, H.N., Fromme, P., Barty, A. et al. (2011). Nature 470: 73–77.
50 50 Kamiya, N. and Shen, J.‐R. (2003). Proc. Natl. Acad. Sci. U.S.A. 100: 98–103.
51 51 Ferreira, K.N., Iverson, T.M., Maghlaoui, K. et al. (2004). Science