2.4 Conclusion
This chapter has reviewed an emerging class of oligomeric PAs possessing A‐type dual interflavan linkages, covering their structures, putative biosynthesis, and chemical synthesis. The research on this class of complex oligomers is still limited by the scarce availability of samples with high purity. For future progress, the role of organic synthesis is quite important, requiring the development of reliable synthetic methods, including (i) the flexible preparative methods of the flavan‐3‐ol monomeric constituents, and (2) facile means of constructing the [3.3.1]‐bicyclic skeleton with control of the stereo‐ and regiochemistry. The latter process needs to be reiterative, in dealing with the targets having multiple A‐type linkages. We hope this review will provide insights for further development and might serve as an invitation to researchers of various fields, attracting interest to this potentially exciting field.
References
1 Alejo‐Armijo, A., Parola, A. J., Pina, F., Altarejos, J., and Salido, S. (2018). Thermodynamic stability of flavylium salts as a valuable tool to design the synthesis of A‐type proanthocyanidin analogues. The Journal of Organic Chemistry 83: 12297–12304.
2 Balde, A., de Bruyne, T., Pieters, L., et al. (1995). Tetrameric proanthocyanidins containing a double interflavanoid (A‐type) linkage from Pavetta owariensis. Phytochemistry 40: 933–938.
3 Betkekar, V.V., Harachi, M., Suzuki, K., and Ohmori, K. (2019). Syntheses of doubly linked proanthocyanidins using free flavan units as nucleophiles: insight into the origin of the high regioselectivity of annulation. Organic & Biomolecular Chemistry 17: 9129–9134.
4 Ito, Y., Ohmori, K. and Suzuki, K. (2014). Annulation approach to doubly linked (A‐type) oligocatechins: syntheses of (+)‐procyanidin A2 and (+)‐cinnamtannin B1. Angewandte Chemie International Edition 53: 10129–10133.
5 Jacques, D., Haslam, E., Bedford, G.R., and Greatbanks, D. (1973). Structure of the dimeric proanthocyanidin A2 and its derivatives. Journal of the Chemical Society, Chemical Communications 518–520.
6 Jacques, D., Haslam, E., Bedford, G.R., and Greatbanks, D. (1974). Plant proanthocyanidins. Part II. Proanthocyanidin A2 and its derivatives. Journal of the Chemical Society, Perkin Transactions 1: 2663–2671.
7 Jurd, L. and Waiss, A.C. (1965). Anthocyanins and related compounds – VI. Tetrahedron, 21, 1471–1483.
8 Kondo, K., Kurihara, M., Fukuhara, K., et al. (2000). Conversion of procyanidin B‐type (catechin dimer) to A‐type: evidence for abstraction of C‐2 hydrogen in catechin during radical oxidation. Tetrahedron Letters 41: 485–488.
9 Kozikowski, A.P. and Tückmantel, W. (2009). Methods for synthesizing the cocoa‐derived oligomeric epi‐catechins – observations on the anticancer activity of the cocoa polyphenols. In: Recent Advances in Polyphenol Research (eds. Daayf, F. and Lattanzio, V., 88–112. Wiley.
10 Kraus, G.A., and Geraskin, I.M. (2017). Rapid assembly of the procyanidin A skeleton. Tetrahedron Letters 58: 4609–4611.
11 Kraus, G.A., Yuan, Y., and Kempema, A. (2009). A convenient synthesis of type A procyanidins. Molecules 14: 807–815.
12 Makabe, H. (2013). Recent syntheses of proanthocyanidins. Heterocycles 87: 2225–2248.
13 Mayer, W. Goll, L., Arndt, E.M.V., and Mannschreek, A. (1966). Procyanidino‐(–)‐epicatechin, ein zweiarmig verknüpftes, kondensiertes proanthocyanidin aus Aesculus hippocastanum. Tetrahedron Letters 7: 429–435.
14 Morimoto, S., Nonaka, G., and Nishioka, I. (1985). Tannins and related compounds. XXXV. Proanthocyanidins with a doubly linked unit from the root bark of Cinnamomum sieboldii MEISNER. Chemical and Pharmaceutical Bulletin 33: 4338–4345.
15 Morimoto, S., Nonaka, G., and Nishioka, I. (1987). Tannins and related compounds. LIX. Aesculitannins, novel proanthocyanidins with doubly‐bonded structures from Aesculus hippocastanum L. Chemical and Pharmaceutical Bulletin 35: 4717–4729.
16 Nam, J.W., Phansakkar, R.S., Lankin, D.C., et al. (2017). Absolute configuration of native oligomeric proanthocyanidins with dentin biomodification potency. The Journal of Organic Chemistry 82: 1316–1329.
17 Noguchi, Y., Takeda, R., Suzuki, K., and Ohmori, K. (2018). Total synthesis of selligueain A, a sweet flavan trimer. Organic Letters 20: 2857–2861.
18 Nonaka, G.‐I., Morimoto, S., Kinjo, J.‐E., et al. (1987). Tannins and related compounds. L structures of proanthocyanidin A‐1 and related compounds. Chemical and Pharmaceutical Bulletin 35: 149–155.
19 Nonaka, G.‐I., Morimoto, S. and Nishioka, I. (1983). Tannins and related compounds. Part 13. Isolation and structures of trimeric, tetrameric, and pentameric proanthocyanidins from cinnamon. Journal of the Chemical Society, Perkin Transactions 1: 2139–2145.
20 Ohmori, K., Shono, T., Hatakoshi, Y., et al. (2011). Integrated synthetic strategy for higher catechin oligomers. Angewandte Chemie International Edition 50: 4862–4867.
21 Ohmori, K., Ushimaru, N. and Suzuki, K. (2004). Oligomeric catechins: an enabling synthetic strategy by orthogonal activation and C(8) protection. Proceedings of the National Academy of Sciences of the United States of America 101: 12002–12007.
22 Oyama, K.‐I., Kuwano, M., Ito, M., et al. (2008). Synthesis of procyanidins by stepwise‐ and self‐condensation using 3,4‐cis‐4‐acetoxy‐3‐O‐acetyl‐4‐dehydro‐5,7,3',4'‐tetra‐O‐benzyl‐(+)‐catechin and (–)‐epicatechin as a key building monomer. Tetrahedron Letters 49: 3176–3180.
23 Pomilio, A., Müller, O., Schilling, G. and Weinges, K. (1977). Zur kenntnis der proanthocyanidine, XXII. Über die konstitution der kondensationsprodukte von phenolen mit flavyliumsalzen. Justus Liebigs Annalen der Chemie 1977: 597–601.
24 Saito, A, Mizushina, Y., Tanaka, A. and Nakajima, N. (2009). Versatile synthesis of epicatechin series procyanidin oligomers, and their antioxidant and DNA polymerase inhibitory activity. Tetrahedron 65: 7422–7428.
25 Selenski, C., and Pettus, T.R. (2006). (+/–)‐Diinsininone: made nature's way. Tetrahedron 62: 5298–5307.
26 Sharma, P.K., Romanczyk, L.J., Jr., Kondaveti, L., et al. (2015). Total synthesis of proanthocyanidin A1, A2, and their stereoisomers. Organic Letters 17: 2306–2309.
27 Stadlbauer, S., Ohmori, K., Hattori, F., and Suzuki, K. (2012). A new synthetic strategy for catechin‐class polyphenols: concise synthesis of (–)‐epicatechin and its 3‐O‐gallate. Chemical Communications 48: 8425–8427.
28 Van Rooyen, P.H., and Redelinghuys, H.J.P. (1983). Crystal structure and molecular conformation of proanthocyanidin‐A2, a bitter substance in litchis (Litchi chinensis Sonn.). South African Journal of Chemistry 36: 49–53.
29 Weinges, K., Kaltenhäuser, W., Marx, H.‐D., et al. (1968). Zur kenntnis der proanthocyanidine, X. Procyanidine aus früchten. Justus Liebigs Annalen der Chemie 711: 184–204.
30 Weinges, K. and Theobald, H. (1971). Synthese des 6‐phenyl‐12H‐6.12‐methano‐dibenzo[d.g][1.3]‐dioxocins, einer modellsubstanz für die C30H24O12‐procyanidine. Justus Liebigs Annalen der Chemie 743: 203–206.
31 Xia, L., Cai, H., and Lee, Y.R. (2014). Catalyst‐controlled regio‐ and stereoselective synthesis of diverse 12H‐6,12‐methanodibenzo[d,g][1.3]dioxocines. Organic and Biomolecular Chemistry 12: 4386–4396.
32 Yang, Z., He, Y. and Toste, F.D. (2016). Biomimetic approach to the catalytic enantioselective synthesis of flavonoids. Journal of the American Chemical Society 138: 9775–9778.
33 Yano, T., Ohmori, K., Takahashi, H., et al. (2012). Unified approach to catechin hetero‐oligomers: first total synthesis of trimer EZ‐EG‐CA isolated from Ziziphus jujuba. Organic and Biomolecular Chemistry 10: 7685–7688.