Organic Electronics for Electrochromic Materials and Devices. Hong Meng. Читать онлайн. Newlib. NEWLIB.NET

Автор: Hong Meng
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Отраслевые издания
Год издания: 0
isbn: 9783527830626
Скачать книгу
Syzdek, J., Armand, M., Gizowska, M. et al. (2009). Journal of Power Sources 194: 66.

      112 112 Chen, L., Li, Y., Li, S.‐P. et al. (2018). Nano Energy 46: 176.

      113 113 Kumar, B. and Scanlon, L.G. (2000). Journal of Electroceramics 5: 127.

      114 114 Yao, P., Yu, H., Ding, Z. et al. (2019). Frontiers in Chemistry 7: 522.

      115 115 Liu, W., Lin, D., Sun, J., Zhou, G., and Cui, Y. (2016). ACS Nano 10: 11407–11413.

      116 116 Zhu, P., Yan, C., Dirican, M. et al. (2018). Journal of Materials Chemistry A 6: 4279.

      117 117 Zhao, Y., Wu, C., Peng, G. et al. (2016). Journal of Power Sources 301: 47.

      118 118 Čolović, M., Jerman, I., Gaberšček, M., and Orel, B. (2011). Solar Energy Materials and Solar Cells 95: 3472.

      119 119 Lewandowski, A. and Świderska‐Mocek, A. (2009). Journal of Power Sources 194: 601.

      120 120 Ma, L., Li, Y., Yu, X. et al. (2009). Solar Energy Materials and Solar Cells 93: 564.

      121 121 Zhou, D., Zhou, R., Chen, C. et al. (2013). The Journal of Physical Chemistry B 117: 7783.

      122 122 Candhadai Murali, S.P. and Samuel, A.S. (2019). Journal of Applied Polymer Science 136: 47654.

      123 123 MacFarlane, D.R., Forsyth, M., Howlett, P.C. et al. (2016). Nature Reviews Materials 1: 1.

      124 124 Mecerreyes, D. (2011). Progress in Polymer Science 36: 1629.

      125 125 Yuan, J., Mecerreyes, D., and Antonietti, M. (2013). Progress in Polymer Science 38: 1009.

      126 126 Marcilla, R., Alcaide, F., Sardon, H. et al. (2006). Electrochemistry Communications 8: 482.

      127 127 Shin, J.‐H., Henderson, W.A., Tizzani, C. et al. (2006). Journal of the Electrochemical Society 153: A1649.

      128 128 Puguan, J.M.C. and Kim, H. (2019). Journal of Materials Chemistry A 7: 21668.

      129 129 Guo, J., Yuan, C., Guo, M. et al. (2014). Chemical Science 5: 3261.

      130 130 Sui, X., Hempenius, M.A., and Vancso, G.J. (2012). Journal of the American Chemical Society 134: 4023.

      131 131 Avellaneda, C.O., Vieira, D.F., Al‐Kahlout, A. et al. (2008). Solar Energy Materials and Solar Cells 92: 228.

      132 132 Avellaneda, C.O., Vieira, D.F., Al‐Kahlout, A. et al. (2007). Electrochimica Acta 53: 1648.

      133 133 Silva, M., Barbosa, P., Rodrigues, L. et al. (2010). Optical Materials 32: 719.

      134 134 Danine, A., Manceriu, L., Fargues, A., and Rougier, A. (2017). Electrochimica Acta 258: 200.

      135 135 Tihan, G.T., Mindroiu, M., Rau, I. et al. (2020). Materials Chemistry and Physics 241: 122349.

      136 136 Zachman, M.J., Tu, Z., Choudhury, S. et al. (2018). Nature 560: 345.

      137 137 Wang, X., Zhang, M., Alvarado, J. et al. (2017). Nano Letters 17: 7606.

      138 138 Barbosa, P.C., Rodrigues, L.C., Silva, M.M. et al. (2010). Electrochimica Acta 55: 1495.

      139 139 Eren, E. (2019). Journal of the Turkish Chemical Society Section A 5: 1413.

      140 140 Nguyen, C.A., Xiong, S., Ma, J. et al. (2011). Physical Chemistry Chemical Physics 13: 13319.

      141 141 Sim, L.N., Majid, S.R., and Arof, A.K. (2012). Solid State Ionics 209: 15.

      142 142 Puguan, W., J. Chung, and H. Kim. Electrochimica Acta, 2016, 196, 236

      143 143 Yu, H.F., Kao, S.Y., Lu, H.C. et al. (2018). Solar Energy Materials & Solar Cells 177: 32.

      144 144 Oh, H., Seo, D.G., Yun, T.Y. et al. (2017). Organic Electronics 51: 490.

      145 145 Chang, T.H., Hu, C.W., Kao, S.Y. et al. (2015). Solar Energy Materials & Solar Cells 143: 606.

      146 146 Tang, Q., Li, H., Yue, Y. et al. (2017). Materials and Design 118: 279.

      147 147 Li, X., Zhang, L., Wang, B. et al. (2020). Electrochimica Acta 332: 135357.

      148 148 Gohel, K. and Kanchan, D.K. (2018). Journal of Advanced Dielectrics 8: 1850005.

      149 149 Wang, J.Y., Wang, M.C., and Jan, D.J. (2017). Solar Energy Materials & Solar Cells 160: 476.

      150 150 Liu, X., Li, K., Hou, C. et al. (2019). Materials Science and Engineering B 241: 36.

      151 151 Zhang, F., Dong, G., Liu, J. et al. (2017). Ionics 23: 1879.

      152 152 Sim, L.N., Sentanin, F.C., Pawlicka, A. et al. (2017). Electrochimica Acta 229: 22.

      153 153 Chen, W., Zhu, C., Guo, L. et al. (2019). Journal of Materials Chemistry C 7: 3744.

      154 154 Yao, M., Hu, H., Wang, N. et al. (2020). Journal of Colloid and Interface Science.

      155 155 Zhou, J., Wang, J., Li, H., and Shen, F. (2018). Organic Electronics 62: 516.

      156 156 Peng, H., Lv, Y., Wei, G. et al. (2019). Journal of Power Sources 431: 210.

      157 157 Zhou, B., Jo, Y.H., Wang, R. et al. (2019). Journal of Materials Chemistry A 7: 10354.

      158 158 Wang, Y., Zheng, R., Luo, J. et al. (2019). Electrochimica Acta 320: 134489.

      159 159 Wang, Q., Cui, Z., Zhou, Q. et al. (2020). Energy Storage Materials 25: 756.

      160 160 Karan, C.K., Mallick, S., Raj, C.R., and Bhattacharjee, M. (2019). Chemistry ‐ A European Journal 25: 14775.

      161 161 Ahmed, F., Choi, I., Rahman, M.M. et al. (2019). ACS Applied Materials & Interfaces 11: 34930.

      162 162 Shi, Y., Wang, Y., Gu, Y. et al. (2019). Chemical Engineering Journal: 123645.

      163 163 Kobayashi, N., Uchiyama, M., and Tsuchida, E. (1985). Solid State Ionics 17: 307–311.

      164 164 Sun, X.G., Hou, J., and Kerr, J.B. (2005). Electrochimica Acta 50: 1139–1147.

      165 165 Sun, X.G., Reeder, C.L., and Kerr, J.B. (2004). Macromolecules 37: 2219–2227.

      166 166 Benrabah, D., Sylla, S., Sanchez, J.Y., and Armand, M. (1995). Journal of Power Sources 54: 456–460.

      167 167 Xu, W., Siow, K.S., Gao, Z., and Lee, S.Y. (1998). Chemistry of Materials 10: 1951–1957.

      168 168 Allcock, H.R., Welna, D.T., and Maher, A.E. (2006). Solid State Ionics 177: 741–747.

      169 169 Gupta, H., Balo, L., Singh, V.K. et al. (2017). Solid State Ionics 309: 192–199.

      170 170 Watanabe, M., Suzuki, Y., and Nishimoto, A. (2000). Electrochimica Acta 45: 1187–1192.

      171 171 Watanabe, M., Tokuda, H., and Muto, S. (2001). Electrochimica Acta 46: 1487–1491.

      172 172 Fenton, D.E., Parker, J.M., and Wright, P.V. (1973). Polymer 14: 589.

      173 173 Geiculescu, O.E., Yang, J., Zhou, S. et al. (2004). Journal of The Electrochemical Society 151: A1363.

      174 174 Ma, Q., Zhang, H., Zhou, C. et al. (2016). Angewandte Chemie, International Edition 55: 2521–2525.

      175 175 Ryu, S.W., Trapa, P.E., Olugebefola, S.C. et al. (2005). Journal of the Electrochemical Society 152: A158–A163.

      176 176 Porcarelli, L., Shaplov, A.S., Salsamendi, M. et al. (2016). ACS Applied Materials & Interfaces 8: 10350–10359.

      177 177 Bouchet, R., Maria, S., and Meziane, R. (2013). Nature Materials 12: 452–457.

      178 178 Ahmed, F., Choi, I., and Rahman, M.M. (2019). ACS Applied Materials & Interfaces 11: 34930–34938.

      179 179 Park, C.H., Sun, Y.K., and Kim, D.W. (2004). Electrochimica Acta 50: 375–378.

      180 180 Sun, X.G. and Angell, C.A. (2004). Solid State Ionics 175: 743–746.

      181 181 Yang, C.C., Hsu, S.T., and Chien, W.C. (2005). Journal of Power Sources 152: 303–310.

      182 182 Yang, C.M., Ju, J.B., Lee, J.K. et al. (2005). Electrochimica Acta 50: 1813–1819.

      183 183