Метеорологические и геофизические исследования. Г. В. Алексеев. Читать онлайн. Newlib. NEWLIB.NET

Автор: Г. В. Алексеев
Издательство:
Серия: Вклад России в Международный полярный год 2007/08
Жанр произведения: Публицистика: прочее
Год издания: 2011
isbn: 978-5-98797-067-6
Скачать книгу
является одной из важнейших, определяющих термический режим приземного слоя воздуха, составляющих радиационного баланса подстилающей поверхности. В период полярной ночи это единственный радиационный поток, направленный к поверхности. Поскольку инструментальных наблюдений за этой величиной в ГМО «Баренцбург» не проводится, то величина потока длинноволновой радиации была определена расчетным путем. Мы использовали хорошо зарекомендовавшую себя и верифицированную по данным прямым измерений параметризацию, разработанную в Институте Полярных и Морских исследований им. А. Вегенера (König – Langlo et al., 1994; Pirazzin, et al., 2000). Основными метеорологическими элементами, которые используются при расчетах длинноволновой радиации, являются температура и упругость водяного пара в приземном слое воздуха, балл общей облачности. В расчетную формулу метода входят также величина излучательной способности атмосферы, постоянная Стефана-Больцмана и эмпирические коэффициенты, подобранные для условий архипелага Шпицберген.

      Таким образом, имея в распоряжении срочные данные по баллу общей облачности и температуре приземного слоя воздуха за период с 1966 по 2009 гг., мы рассчитали длинноволновое излучение атмосферы за этот период. Величины потоков за каждый срок затем суммировались, чтобы получить месячные и годовые суммы по аналогии с суммами суммарной солнечной радиации. Поскольку длинноволновое излучение, в соответствии с формулой, полученной в работе (König – Langlo, et al., 1994), в значительной степени определяется количеством облачности, то кривые, отображающие временную изменчивость годовых сумм длинноволнового излучения атмосферы и величины повторяемости пасмурного неба в целом очень подобны. Результаты представлены на рис. 3.

      Рис. 3. Изменения во времени и линейные тренды повторяемостей ясного и пасмурного неба и годовых сумм нисходящей длинноволновой радиации атмосферы

      Из анализа временных серий следует, что изменение повторяемости пасмурного неба оказывает определяющее воздействие на величину длинноволновой атмосферной радиации. При этом, в отличие от рассмотренного выше случая с приходящей суммарной коротковолновой радиацией, изменения повторяемости ясного неба оказывают незначительное влияние на изменчивость длинноволнового излучения атмосферы. Таким образом, наблюдаемое за исследуемый период увеличение количества длинноволнового излучения атмосферы определяется в основном увеличением величины повторяемости пасмурного неба на архипелаге Шпицберген. В совокупности это способствует возникновению хорошо известного в климатологии парникового эффекта. Следствием последнего, как следует из рис. 4, и является наблюдаемая во второй половине ХХ века тенденция увеличения температуры приземного слоя воздуха.

      Рис. 4. Изменение во времени и линейные тренды среднегодовой температуры воздуха и годовых сумм нисходящей длинноволновой радиации атмосферы

      Это дает основание полагать,