Now since only the essential attributes of any genus and those belonging to it as such are necessary, it is clear that scientific demonstrations both deal with and are drawn from essential attributes. As accidental attributes are not necessary one does not require to know the cause of the conclusion, not even if this be an eternal attribute without being essential, as in the case of syllogisms based on universal concomitance. In this latter connection the essential will be known, but not the fact that it is essential, nor yet why it is so. (By ‘knowledge of why it is essential’ I mean ‘knowing its cause.’) In order then to possess knowledge of this sort the middle term must result from the nature of the minor, and the major from the nature of the middle.
Chapter VII: The Premises and the Conclusion of a Demonstration must belong to the same genus
Premises must be homogeneous with the conclusion. No transference of premises from one genus to another is valid unless the one is subaltern to the other.
It is not possible to arrive at a demonstration by using for one’s proof a different genus from that of the subject in question; e.g. one cannot demonstrate a geometrical problem by means of arithmetic. There are three elements in demonstrations:—(1) the conclusion which is demonstrated, i.e., an essential attribute of some genus; (2) axioms or self-evident principles from which the proof proceeds; (3) the genus in question whose properties, i.e. essential attributes, are set forth by the demonstrations. Now the axioms which form the grounds of the demonstration may be identical for different genera; but in cases where the genera differ, as do arithmetic and geometry, it is not possible, e.g. to adapt an arithmetical demonstration to attributes of spatial magnitudes, unless such magnitudes happen to be numbers. That such transference is possible in certain connections I will explain later (cf. Chap. IX.).
Arithmetical demonstration is restricted to the genus with which it is properly concerned, and so with other sciences. Hence if a demonstration is to be transferred from one science to another the subjects must be the same either absolutely or in some respect. Otherwise such a transference is clearly impossible, for the extremes and the middle terms must necessarily belong to the same genus, for if not they would not be essentially but only accidentally predicable of the subject.
Hence one cannot shew by means of geometry that opposites are dealt with by a single science nor yet that two cubes when multiplied together produce another cube. Nor can one prove what belongs to one science by means of another except when one is subordinate to the other, as optics are to geometry and harmonics to arithmetic.
Neither is geometry concerned with the question of an attribute of line which does not inhere in it as such, and does not result from the special principles of geometry, as for instance the question whether the straight line is the most beautiful kind of line, or whether the straight line is the opposite of a circumference, for these qualities of beauty and opposition do not belong to line as a result of its particular genus, but because it has some qualities in common with other subjects.
Chapter VIII: Demonstration is concerned only with what is eternal
The conclusion of a demonstration must be of everlasting application. Perishable things are, strictly speaking, indemonstrable. This applies also to definitions, which are a partial demonstration.
It is clear that if the premises from which the syllogism proceeds are universal, the conclusion of such a demonstration and of demonstration in general must be eternal. There is then no knowledge properly speaking of perishable things, but only accidentally, because the knowledge of perishable things is not universal but under restrictions of time and manner. When this is the case, the minor premise at least must be other than universal and must be perishable:—perishable because then the conclusion will contain a similar element, other than universal because then the predication will apply to some and not others of the subjects in question; so that no universal conclusion can be drawn but only one referring to this or that definite time. The same holds good with regard to definitions, seeing that definition is either the starting point of a demonstration, or itself a demonstration which differs from definition only in the way in which it is expressed or, lastly, in form a conclusion of a demonstration.
Demonstrations and sciences concerning things which occur only frequently (e.g. lunar eclipses) are clearly of everlasting application in so far as they are demonstrations, while in so far as they are not of everlasting application they are particular. As in the case of eclipses so is it with other subjects of the kind.
Chapter IX: Demonstration is founded not on general, but on special and indemonstrable principles; nor is it easy to know whether one really possesses knowledge drawn from these principles
All demonstration is derived from special principles, themselves indemonstrable, the knowledge of which, in each genus, is the supreme knowledge on which the whole deduction depends.
Since it is clear that nothing can be demonstrated except from its own elementary principles, that is to say when the thing demonstrated is an essential attribute of the subject, it does not suffice for the possession of knowledge that a thing shall have been demonstrated from true, indemonstrable and ultimate premises. Otherwise demonstrations would be admissible resembling that of Bryson demonstrating the squaring of the circle. Now such arguments demonstrate by means of a common principle which will apply to another science as well, so that the same arguments are of service in other sciences distinct in kind. Thus we have no essential but only an accidental knowledge of the thing, for otherwise the demonstration would not also be applicable to another kind of subjects.
We have more than an accidental knowledge of anything when we see it in the light of its essential nature, after starting from the elementary principles of the things as such. Thus we know the law that a triangle has two right angles when we know of what figure this is an essential attribute and know it after starting from the principles peculiar to Triangle. Hence if the attribute is essentially an attribute of the subject, the middle term of the demonstration must necessarily be included in the same genus, or, if not, one of the genera must be subordinate to the other, as when proportions in harmonics are proved by means of arithmetical premises. Such relations are proved in the same way as in arithmetic, but there is a difference between the two cases, for the question of the Fact falls under the one science (since the subjects of the two sciences differ generically) but the Cause is established by the superior science, to which the properties in question are essential. It is plain even from the case of the subordinate sciences that no absolute demonstration of a thing can be attained save by starting from its own elementary principles. In this case, however, the elementary principles of the sciences in question are not mutually exclusive.
If this be admitted it is also clear that it is impossible to demonstrate the special elementary principles of each science, for the principles of such a demonstration would be the elementary principles of everything, and the science formed by them would be the universal master science; seeing that one who learns a thing through the recognition of higher causes has a better knowledge of it, and the principles through which he learns the thing are anterior when they are causes not themselves produced by any higher cause. If then his knowledge be of this higher kind it must have attained to the highest possible degree, and if this subjective knowledge of his constitute a science,