Handbook of Enology: Volume 1. Pascal Ribéreau-Gayon. Читать онлайн. Newlib. NEWLIB.NET

Автор: Pascal Ribéreau-Gayon
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119584629
Скачать книгу
winemaking conditions produce abnormally high amounts of acetic acid. Since this acid is not used during the second half of the fermentation, it accumulates until the end of fermentation. When refermenting a tainted wine, yeasts can lower volatile acidity by metabolizing acetic acid. The wine is incorporated into freshly crushed grapes at a proportion of no more than 20–30%. The wine should be sulfited or filtered before incorporation to eliminate bacteria. The volatile acidity of this mixture should not exceed 0.6 g/l expressed as H2SO4. The volatile acidity of this newly made wine rarely exceeds 0.3 g/l expressed as H2SO4. The concentration of ethyl acetate decreases simultaneously.

      

      2.3.5 Other Secondary Products of the Fermentation of Sugars

      Lactic acid is another secondary product of fermentation. It is also derived from pyruvic acid, which is directly reduced by yeast L(+)‐ and D(−)‐lactate dehydrogenases. Under anaerobic conditions (the case in alcoholic fermentation), the yeast synthesizes predominantly D(−)‐lactate dehydrogenase. Yeasts form 200–300 mg of D(−)‐lactic acid per liter and only a few dozen milligrams of L(+)‐lactic acid. The latter is formed essentially at the start of fermentation. By determining the D(−)‐lactic acid concentration in a wine, it can be ascertained whether the origin of acetic acid is yeast or lactic acid bacteria (Section 14.2.3). Wines that have undergone malolactic fermentation can contain several grams per liter of exclusively L(+)‐lactic acid. On the other hand, the lactic acid fermentation of sugars (lactic spoilage) forms D(−)‐lactic acid. When D(−)‐lactic acid concentrations exceed 200–300 mg/l, it is clear that lactic acid bacteria have transformed substrates other than malic acid.

Schematic illustration of acetoin, diacetyl, and 2,3-butanediol formation by yeasts under anaerobic conditions. TPP, thiamine pyrophosphate; TPP-C2, active acetaldehyde. Schematic illustration of citramalic acid and dimethylglyceric acid.

      2.3.6 Degradation of Malic Acid by Yeast

      Schizosaccharomyces differs from wine yeasts. The alcoholic fermentation of malic acid is complete in yeasts of this genus, which possess an active malate transport system. In S. cerevisiae, malic acid penetrates the cell by simple diffusion. Yet at present no attempts to use Schizosaccharomyces in winemaking to break down the malic acid in musts have been successful (Peynaud et al., 1964; Carre et al., 1983). First of all, the implantation of these yeasts in the presence of S. cerevisiae is difficult in a non‐sterilized must. Secondly, their optimum growth temperature (30°C), higher than for S. cerevisiae, imposes warmer fermentation conditions. Sometimes, the higher temperature adversely affects the sensory quality of wine. Finally, some grape varieties fermented by Schizosaccharomyces do not express their varietal aromas. The acidic Gros Manseng variety produces a very fruity wine when correctly vinified with S. cerevisiae, but has no varietal aroma when fermented by Schizosaccharomyces. To resolve these problems, some researchers have used non‐proliferating populations of Schizosaccharomyces enclosed in alginate balls. These populations degrade the malic acid in wines having already completed their alcoholic fermentation (Magyar and Panyik, 1989; Taillandier and Strehaiano, 1990). Although no sensory defect is found in these wines, the techniques have not yet been developed for practical use.

      Today, molecular biology permits another strategy for making use of the ability of Schizosaccharomyces to ferment malic acid. It consists of integrating Schizosaccharomyces malate permease genes and the malic enzyme (Mae 1 and Mae 2) in the S. cerevisiae genome (Van Vuuren et al., 1996). The technological interest of a wine yeast genetically modified in this manner is not yet clear, nor are the risks of its proliferation in wineries and nature.

Schematic illustration of decomposition of malic acid by yeasts during alcoholic fermentation.

      The nitrogen requirements of wine yeasts and the nitrogen supply in grape musts are discussed later (Section 3.4.2). The following section covers the general mechanisms of assimilation, biosynthesis, and degradation of amino acids in yeasts. The consequences of these metabolisms, which occur during alcoholic fermentation and affect the production of higher alcohols and their associated esters in wine, are also discussed.

      2.4.1 Amino Acid Synthesis Pathways

      The ammonium ion and amino acids found in grape must supply the yeast with nitrogen. The yeast can also synthesize most of the amino acids necessary for constructing its proteins. It fixes an ammonium ion on a carbon skeleton derived from the metabolism of sugars. The