Анти-Дюринг. Происхождение семьи, частной собственности и государства. Фридрих Энгельс. Читать онлайн. Newlib. NEWLIB.NET

Автор: Фридрих Энгельс
Издательство: Издательство АСТ
Серия: Вся история в одном томе
Жанр произведения: Философия
Год издания: 0
isbn: 978-5-17-136225-6
Скачать книгу
и этих измерений у нас было бы, следовательно, шесть. Кант настолько хорошо понимал это, что только косвенно, обходным путем переносил свой числовой ряд на пространственность мира. Г-н Дюринг, напротив, заставляет нас принять шесть измерений в пространстве и тотчас же вслед за этим не находит достаточно слов для выражения своего негодования по поводу математического мистицизма Гаусса, который не хотел довольствоваться тремя обычными измерениями пространства[47].

      В применении ко времени бесконечная в обе стороны линия, или бесконечный в обе стороны ряд единиц, имеет известный образный смысл. Но если мы представляем себе время как ряд, начинающийся с единицы, или как линию, выходящую из определенной точки, то мы тем самым уже заранее говорим, что время имеет начало; мы предполагаем как раз то, что должны доказать. Мы придаем бесконечности времени односторонний, половинчатый характер; но односторонняя, разделенная пополам бесконечность есть также противоречие в себе, есть прямая противоположность «бесконечности, мыслимой без противоречий». Избежать такого противоречия можно, лишь приняв, что единицей, с которой мы начинаем считать ряд, точкой, отправляясь от которой мы производим измерение линии, может быть любая единица в ряде, любая точка на линии и что для линии или ряда безразлично, где мы поместим эту единицу или эту точку.

      Но как быть с противоречием «сосчитанного бесконечного числового ряда»? Его мы сможем исследовать ближе в том случае, если г-н Дюринг покажет нам кунштюк, как сосчитать этот бесконечный ряд. Когда он справится с таким делом, как счет от —∞ (минус бесконечность) до нуля, тогда пусть он явится к нам. Ведь ясно, что откуда бы он ни начал свой счет, он оставит за собой бесконечный ряд, а вместе с ним и ту задачу, которую ему надо решить. Пусть он обернет свой собственный бесконечный ряд 1+2+3+4 … и попытается вновь считать от бесконечного конца обратно до единицы; совершенно очевидно, что это попытка человека, который совсем не видит, о чем здесь идет речь. Более того. Если г-н Дюринг утверждает, что бесконечный ряд протекшего времени сосчитан, то он тем самым утверждает, что время имеет начало, ибо иначе он вовсе не мог бы начать «сосчитывать». Он, стало быть, опять подсовывает в виде предпосылки то, что должен доказать. Таким образом, представление о сосчитанном бесконечном ряде, другими словами, мирообъемлющий дюринговский закон определенности каждого данного числа есть contradictio in adjecto[48], содержит в себе самом противоречие, и притом абсурдное противоречие.

      Ясно следующее: бесконечность, имеющая конец, но не имеющая начала, не более и не менее бесконечна, чем та, которая имеет начало, но не имеет конца. Малейшая диалектическая проницательность должна была бы подсказать г-ну Дюрингу, что начало и конец необходимо связаны друг с другом, как северный и южный полюсы, и что когда отбрасывают конец, то начало становится концом, тем единственным концом, который имеется у ряда, – и наоборот. Вся иллюзия была бы


<p>47</p>

Речь идет о выпадах Дюринга против идей великого немецкого математика К. Ф. Гаусса относительно построения неевклидовой геометрии, в особенности – относительно построения геометрии многомерного пространства.

<p>48</p>

Противоречие в определении, т. е. абсурдное противоречие типа «круглый квадрат», «деревянное железо». – Ред.