Население Земли как растущая иерархическая сеть II. Анатолий Васильевич Молчанов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Анатолий Васильевич Молчанов
Издательство: ЛитРес: Самиздат
Серия:
Жанр произведения: Биология
Год издания: 2021
isbn:
Скачать книгу
получается 156 циклов. Из них пустых 156 – 14 = 142. Соответственно, за каждый из оставшихся 14 циклов собирается один клаттер. Заходить на второй виток ни разу не приходилось. Сеть проходит четыре гармонические стадии роста: в момент старта, а также на 93-м, 134-м и 156-м цикле с числом клаттеров 2, 4, 8 и 16, соответственно. Переходим ко второму этапу.

      Рис. 2. Алгоритм роста сети 256 от 16-ти до 256-ти клаттеров.

      На этом этапе пройдено 15 циклов. Его начало сопровождается бурным ростом числа клаттеров. Это связано с тем, что на втором этапе за цикл с нуля собирается один или большее число клаттеров. Для реализации прохода через гармонические сети необходимо было скорректировать рост, но только в четырех точках «близких» к гармоническим сетям.

      Каждая коррекция представляла собой малое возмущение в один клаттер и была проведена на стадиях роста с числом клаттеров 20, 31, 65 и 127: (127 + 1)·2 = 256, (31 + 1)·8 = 256, (65-1)·4 = 256. Существует не одна такая четверка, но результат, функция U(C), – остается тем же.

      Растущая сеть проходит через гармонические стадии с размером: 16, 32, 64, 128, 256 клаттеров. На последнем цикле число клаттеров удваивается: U(14) = 128, U(15) = 256. Это справедливо для сетей любого ранга. Отметим также, что результаты работы алгоритма практически полностью совпадают со значениями следующей функции:

      Рис. 3. Теоретическая гипербола сети 256.

      Назовем функцию U1(i) теоретической гиперболой сети 256. Этап заканчивается сборкой клаттера 65536. И, наконец, третий этап роста сети 256 – репликация. Здесь сеть собирает свою копию и прокладывает связь между ней и оригиналом. Сеть 65536 может стартовать.

      Подведем итоги для сети 256: всего имеется 156 + 15 = 171 цикл (без учета репликации) и восемь гармонических стадий роста с числом клаттеров 2, 4, 8, 16, 32, 64, 128, 256. Последняя гармоническая сеть с числом клаттеров 256 является также совершенной.

      Рост сети 65536

      Продолжая процесс, переходим к сети 65536. Первый этап – рост от 2-х клаттеров до 256-ти.

      Рис. 1. Рост сети 65536 от 2-х клаттеров до 256-ти.

      Всего сеть проходит 42142 цикла. Из них пустых 42142 – 254 = 41888. В 254 циклах собиралось по одному клаттеру. На второй виток, в соответствии с алгоритмом, заходить не приходилось.

      Имеется восемь гармонических стадий роста: на старте и на 23666-м, 33543-м, 38046-м, 40197-м, 41261-м, 41812-м, 42142-м циклах с числом 2, 4, 8, 16, 32, 64, 128 и 256 клаттеров, соответственно.

      Второй этап – рост от 256-ти клаттеров до 65536-ти.

      Рис. 2. Рост сети 65536 от 256-ти клаттеров до 65536-ти.

      Коррекция роста проведена в 21 точке. Все значения размеров сети, для которых проводилась коррекция М <− М+1, являются (или «почти» являются) делителями числа 65536, если к ним добавить единицу; например, 65536/(13106+1) = 5,000076. Вот частные, которые получаются в результате:

      3, 4, 5, 8, 19, 32, 56, 67, 94, 122, 212, 214, 217, 222, 225, 229, 234, 240.

      Такие коррекции одни из многих возможных, подобных им, но все они дают практически один и тот же результат, если придерживаться правила: при небольшом отклонении от гиперболической сети добавить в цикл один клаттер, т. е. держать курс на ближайшую гиперболическую сеть.