ROUGH ASCENT. 1857.
The danger arising from this intermittent cannonade, though in reality small, has caused the guides to swerve from the path which formerly led across the slope to the promontory of Trélaporte. I say "small," because, even should a rock choose the precise moment at which a traveller is passing to leap down, the boulders at hand are so large and so capable of bearing a shock that the least presence of mind would be sufficient to place him in safety. But presence of mind is not to be calculated on under such circumstances, and hence the guides were right to abandon the path.
Reaching the mouth of our gully after a rough ascent, we took to the snow, instead of climbing the adjacent rocks. It was moist and soft, in fact in a condition altogether favourable for the "regelation" of its granules. As the foot pressed upon it the particles became cemented together. A portion of the pressure was transmitted laterally, which produced attachments beyond the boundary of the foot; thus as the latter sank, it pressed upon a surface which became continually wider and more rigid, and at length sufficiently strong to bear the entire weight of the body; the pressed snow formed in fact a virtual camel's foot, which soon placed a limit to the sinking. It is this same principle of regelation which enables men to cross snow bridges in safety. By gentle cautious pressure the loose granules of the substance are cemented into a continuous mass, all sudden shocks which might cause the frozen surfaces to snap asunder being avoided. In this way an arch of snow fifteen or twenty inches in thickness may be rendered so firm that a man will cross it, although it may span a chasm one hundred feet in depth.
As we ascended, the incline became very steep, and once or twice we diverged from the snow to the adjacent rocks; these were disintegrated, and the slightest disturbance was sufficient to bring them down; some fell, and from one of them I found it a little difficult to escape; for it grazed my leg, inflicting a slight wound as it passed. Just before reaching the cleft at which we aimed, the snow for a short distance was exceedingly steep, but we surmounted it; and I sat for a time beside the granite pillar, pleased to find that I could permit my legs to dangle over a precipice without prejudice to my head.
CHAMOIS ON THE MOUNTAINS. 1857.
While we remained here a chamois made its appearance upon the rocks above us. Deeming itself too near, it climbed higher, and then turned round to watch us. It was soon joined by a second, and the two formed a very pretty picture: their attitudes frequently changed, but they were always graceful; with head erect and horns curved back, a light limb thrown forward upon a ledge of rock, looking towards us with wild and earnest gaze, each seemed a type of freedom and agility. Turning now to the left, we attacked the granite tower, from which we purposed to scan the glacier, and were soon upon its top. My companion was greatly pleased—he was "très-content" to have reached the place—he felt assured that many old guides would have retreated from that ugly gully, with its shifting shingle and débris, and his elation reached its climax in the declaration that, if I resolved to ascend Mont Blanc without a guide, he was willing to accompany me.
SCENE FROM THE STATION. 1857.
From the position which we had attained, the prospect was exceedingly fine, both of the glaciers and of the mountains. Beside us was the Aiguille de Charmoz, piercing with its spikes of granite the clear air. To my mind it is one of the finest of the Aiguilles, noble in mass, with its summits singularly cleft and splintered. In some atmospheric colourings it has the exact appearance of a mountain of cast copper, and the manner in which some of its highest pinnacles are bent, suggesting the idea of ductility, gives strength to the illusion that the mass is metallic. At the opposite side of the glacier was the Aiguille Verte, with a cloud poised upon its point: it has long been the ambition of climbers to scale this peak, and on this day it was attempted by a young French count with a long retinue of guides. He had not fair play, for before we quitted our position we heard the rumble of thunder upon the mountain, which indicated the presence of a foe more terrible than the avalanches themselves. Higher to the right, and also at the opposite side of the glacier, rose the Aiguille du Moine; and beyond was the basin of the Talèfre, the ice cascade issuing from which appeared, from our position, like the foam of a waterfall. Then came the Aiguille de Léchaud, the Petite Jorasse, the Grande Jorasse, and the Mont Tacul; all of which form a cradle for the Glacier de Léchaud. Mont Mallet, the Périades, and the Aiguille Noire, came next, and then the singular obelisk of the Aiguille du Géant, from which a serrated edge of cliff descends to the summit of the "Col."
SÉRACS OF THE COL DU GÉANT. 1857.
Over the slopes of the Col du Géant was spread a coverlet of shining snow, at some places apparently as smooth as polished marble, at others broken so as to form precipices, on the pale blue faces of which the horizontal lines of bedding were beautifully drawn. As the eye approaches the line which stretches from the Rognon to the Aiguille Noire, the repose of the névé becomes more and more disturbed. Vast chasms are formed, which however are still merely indicative of the trouble in advance. If the glacier were lifted off we should probably see that the line just referred to would lie along the summit of a steep gorge; over this summit the glacier is pushed, and has its back periodically broken, thus forming vast transverse ridges which follow each other in succession down the slope. At the summit these ridges are often cleft by fissures transverse to them, thus forming detached towers of ice of the most picturesque and imposing character.[B] These towers often fall; and while some are caught upon the platforms of the cascade, others struggle with the slow energy of a behemoth through the débris which opposes them, reach the edges of the precipices which rise in succession along the fall, leap over, and, amid ice-smoke and thunder-peals, fight their way downwards.
GLACIER MOTION. 1857.
A great number of secondary glaciers were in sight hanging on the steep slopes of the mountains, and from them streams sped downwards, falling over the rocks, and filling the valley with a low rich music. In front of me, for example, was the Glacier du Moine, and I could not help feeling as I looked at it, that the arguments drawn from the deportment of such glaciers against the "sliding theory," and which are still repeated in works upon the Alps, militate just as strongly against the "viscous theory." "How," demands the antagonist of the sliding theory, "can a secondary glacier exist upon so steep a slope? why does it not slide down as an avalanche?" "But how," the person addressed may retort, "can a mass which you assume to be viscous exist under similar conditions? If it be viscous, what prevents it from rolling down?" The sliding theory assumes the lubrication of the bed of the glacier, but on this cold height the quantity melted is too small to lubricate the bed, and hence the slow motion of these glaciers. Thus a sliding-theory man might reason, and, if the external deportment of secondary glaciers were to decide the question, De Saussure might perhaps have the best of the argument.
And with regard to the current idea, originated by M. de Charpentier, and adopted by Professor Forbes, that if a glacier slides it must slide as an avalanche, it may be simply retorted that, in part, it does so; but if it be asserted that an accelerated motion is the necessary motion of an avalanche, the statement needs qualification. An avalanche on passing through a rough couloir soon attains a uniform velocity—its motion being accelerated only up to the point when the sum of the resistances acting upon it is equal to the force drawing it downwards. These resistances are furnished by the numberless asperities which the mass encounters, and which incessantly check its descent, and render an accumulation of motion impossible. The motion of a man walking down stairs may be on the whole uniform, but it is really made up of an aggregate of small motions, each of which is accelerated; and it is easy to conceive