Aristotle: The Complete Works. Aristotle . Читать онлайн. Newlib. NEWLIB.NET

Автор: Aristotle
Издательство: Bookwire
Серия:
Жанр произведения: Философия
Год издания: 0
isbn: 9782378078263
Скачать книгу
series): if on the other hand-they say-the series terminates and there are primary premisses, yet these are unknowable because incapable of demonstration, which according to them is the only form of knowledge. And since thus one cannot know the primary premisses, knowledge of the conclusions which follow from them is not pure scientific knowledge nor properly knowing at all, but rests on the mere supposition that the premisses are true. The other party agree with them as regards knowing, holding that it is only possible by demonstration, but they see no difficulty in holding that all truths are demonstrated, on the ground that demonstration may be circular and reciprocal.

      Our own doctrine is that not all knowledge is demonstrative: on the contrary, knowledge of the immediate premisses is independent of demonstration. (The necessity of this is obvious; for since we must know the prior premisses from which the demonstration is drawn, and since the regress must end in immediate truths, those truths must be indemonstrable.) Such, then, is our doctrine, and in addition we maintain that besides scientific knowledge there is its originative source which enables us to recognize the definitions.

      Now demonstration must be based on premisses prior to and better known than the conclusion; and the same things cannot simultaneously be both prior and posterior to one another: so circular demonstration is clearly not possible in the unqualified sense of ‘demonstration’, but only possible if ‘demonstration’ be extended to include that other method of argument which rests on a distinction between truths prior to us and truths without qualification prior, i.e. the method by which induction produces knowledge. But if we accept this extension of its meaning, our definition of unqualified knowledge will prove faulty; for there seem to be two kinds of it. Perhaps, however, the second form of demonstration, that which proceeds from truths better known to us, is not demonstration in the unqualified sense of the term.

      The advocates of circular demonstration are not only faced with the difficulty we have just stated: in addition their theory reduces to the mere statement that if a thing exists, then it does exist-an easy way of proving anything. That this is so can be clearly shown by taking three terms, for to constitute the circle it makes no difference whether many terms or few or even only two are taken. Thus by direct proof, if A is, B must be; if B is, C must be; therefore if A is, C must be. Since then-by the circular proof-if A is, B must be, and if B is, A must be, A may be substituted for C above. Then ‘if B is, A must be’=’if B is, C must be’, which above gave the conclusion ‘if A is, C must be’: but C and A have been identified. Consequently the upholders of circular demonstration are in the position of saying that if A is, A must be-a simple way of proving anything. Moreover, even such circular demonstration is impossible except in the case of attributes that imply one another, viz. ‘peculiar’ properties.

      Now, it has been shown that the positing of one thing-be it one term or one premiss-never involves a necessary consequent: two premisses constitute the first and smallest foundation for drawing a conclusion at all and therefore a fortiori for the demonstrative syllogism of science. If, then, A is implied in B and C, and B and C are reciprocally implied in one another and in A, it is possible, as has been shown in my writings on the syllogism, to prove all the assumptions on which the original conclusion rested, by circular demonstration in the first figure. But it has also been shown that in the other figures either no conclusion is possible, or at least none which proves both the original premisses. Propositions the terms of which are not convertible cannot be circularly demonstrated at all, and since convertible terms occur rarely in actual demonstrations, it is clearly frivolous and impossible to say that demonstration is reciprocal and that therefore everything can be demonstrated.

      Since the object of pure scientific knowledge cannot be other than it is, the truth obtained by demonstrative knowledge will be necessary. And since demonstrative knowledge is only present when we have a demonstration, it follows that demonstration is an inference from necessary premisses. So we must consider what are the premisses of demonstration-i.e. what is their character: and as a preliminary, let us define what we mean by an attribute ‘true in every instance of its subject’, an ‘essential’ attribute, and a ‘commensurate and universal’ attribute. I call ‘true in every instance’ what is truly predicable of all instances-not of one to the exclusion of others-and at all times, not at this or that time only; e.g. if animal is truly predicable of every instance of man, then if it be true to say ‘this is a man’, ‘this is an animal’ is also true, and if the one be true now the other is true now. A corresponding account holds if point is in every instance predicable as contained in line. There is evidence for this in the fact that the objection we raise against a proposition put to us as true in every instance is either an instance in which, or an occasion on which, it is not true. Essential attributes are (1) such as belong to their subject as elements in its essential nature (e.g. line thus belongs to triangle, point to line; for the very being or ‘substance’ of triangle and line is composed of these elements, which are contained in the formulae defining triangle and line): (2) such that, while they belong to certain subjects, the subjects to which they belong are contained in the attribute’s own defining formula. Thus straight and curved belong to line, odd and even, prime and compound, square and oblong, to number; and also the formula defining any one of these attributes contains its subject-e.g. line or number as the case may be.

      Extending this classification to all other attributes, I distinguish those that answer the above description as belonging essentially to their respective subjects; whereas attributes related in neither of these two ways to their subjects I call accidents or ‘coincidents’; e.g. musical or white is a ‘coincident’ of animal.

      Further (a) that is essential which is not predicated of a subject other than itself: e.g. ‘the walking [thing]’ walks and is white in virtue of being something else besides; whereas substance, in the sense of whatever signifies a ‘this somewhat’, is not what it is in virtue of being something else besides. Things, then, not predicated of a subject I call essential; things predicated of a subject I call accidental or ‘coincidental’.

      In another sense again (b) a thing consequentially connected with anything is essential; one not so connected is ‘coincidental’. An example of the latter is ‘While he was walking it lightened’: the lightning was not due to his walking; it was, we should say, a coincidence. If, on the other hand, there is a consequential connexion, the predication is essential; e.g. if a beast dies when its throat is being cut, then its death is also essentially connected with the cutting, because the cutting was the cause of death, not death a ‘coincident’ of the cutting.

      So far then as concerns the sphere of connexions scientifically known in the unqualified sense of that term, all attributes which (within that sphere) are essential either in the sense that their subjects are contained in them, or in the sense that they are contained in their subjects, are necessary as well as consequentially connected with their subjects. For it is impossible for them not to inhere in their subjects either simply or in the qualified sense that one or other of a pair of opposites must inhere in the subject; e.g. in line must be either straightness or curvature, in number either oddness or evenness. For within a single identical genus the contrary of a given attribute is either its privative or its contradictory; e.g. within number what is not odd is even, inasmuch as within this sphere even is a necessary consequent of not-odd. So, since any given predicate must be either affirmed or denied of any subject, essential attributes must inhere in their subjects of necessity.

      Thus, then, we have established the distinction between the attribute which is ‘true in every instance’ and the ‘essential’ attribute.

      I term ‘commensurately universal’ an attribute which belongs to every instance of its subject, and to every instance essentially and as such; from which it clearly follows that all commensurate universals inhere necessarily in their subjects. The essential attribute, and the attribute that belongs to its subject as such, are identical. E.g. point and straight belong to line essentially, for they belong to line as such; and triangle as such has two right angles, for it is essentially equal to two right angles.

      An attribute belongs commensurately and universally to a subject when it can be shown to belong to any random instance of that subject and when the subject is the first thing to which it can be shown to belong.