Fig. 5
In all cases where the light is incident from air upon the surface of a solid or a liquid, or, to speak more generally, when the incidence is from a less highly refracting to a more highly refracting medium, the reflection is partial. In this case the most powerfully reflecting substances either transmit or absorb a portion of the incident light. At a perpendicular incidence water reflects only 18 rays out of every 1,000; glass reflects only 25 rays, while mercury reflects 666 When the rays strike the surface obliquely the reflection is augmented. At an incidence of 40°, for example, water reflects 22 rays, at 60° it reflects 65 rays, at 80° 333 rays; while at an incidence of 89½°, where the light almost grazes the surface, it reflects 721 rays out of every 1,000. Thus, as the obliquity increases, the reflection from water approaches, and finally quite overtakes, the perpendicular reflection from mercury; but at no incidence, however great, when the incidence is from air, is the reflection from water, mercury, or any other substance, total.
Still, total reflection may occur, and with a view to understanding its subsequent application in the Nicol's prism, it is necessary to state when it occurs. This leads me to the enunciation of a principle which underlies all optical phenomena—the principle of reversibility.[5] In the case of refraction, for instance, when the ray passes obliquely from air into water, it is bent towards the perpendicular; when it passes from water to air, it is bent from the perpendicular, and accurately reverses its course. Thus in fig. 5, if m E n be the track of a ray in passing from air into water, n E m will be its track in passing from water into air. Let us push this principle to its consequences. Supposing the light, instead of being incident along m E or m′ E, were incident as close as possible along C E (fig. 6); suppose, in other words, that it just grazes the surface before entering the water. After refraction it will pursue say the course E n″. Conversely, if the light start from n″, and be incident at E, it will, on escaping into the air, just graze the surface of the water. The question now arises, what will occur supposing the ray from the water to follow the course n‴ E, which lies beyond n″ E? The answer is, it will not quit the water at all, but will be totally reflected (along E x). At the under surface of the water, moreover, the law is just the same as at its upper surface, the angle of incidence (D E n‴) being equal to the angle of reflection (D E x).
Fig. 6
Total reflection may be thus simply illustrated:—Place a shilling in a drinking-glass, and tilt the glass so that the light from the shilling shall fall with the necessary obliquity upon the water surface above it. Look upwards through the water towards that surface, and you see the image of the shilling shining there as brightly as the shilling itself. Thrust the closed end of an empty test-tube into water, and incline the tube. When the inclination is sufficient, horizontal light falling upon the tube cannot enter the air within it, but is totally reflected upward: when looked down upon, such a tube looks quite as bright as burnished silver. Pour a little water into the tube; as the liquid rises, total reflection is abolished, and with it the lustre, leaving a gradually diminishing shining zone, which disappears wholly when the level of the water within the tube reaches that without it. Any glass tube, with its end stopped water-tight, will produce this effect, which is both beautiful and instructive.
Total reflection never occurs except in the attempted passage of a ray from a more refracting to a less refracting medium; but in this case, when the obliquity is sufficient, it always occurs. The mirage of the desert, and other phantasmal appearances in the atmosphere, are in part due to it. When, for example, the sun heats an expanse of sand, the layer of air in contact with the sand becomes lighter and less refracting than the air above it: consequently, the rays from a distant object, striking very obliquely on the surface of the heated stratum, are sometimes totally reflected upwards, thus producing images similar to those produced by water. I have seen the image of a rock called Mont Tombeline distinctly reflected from the heated air of the strand of Normandy near Avranches; and by such delusive appearances the thirsty soldiers of the French army in Egypt were greatly tantalised.
The angle which marks the limit beyond which total reflection takes place is called the limiting angle (it is marked in fig. 6 by the strong line E n″). It must evidently diminish as the refractive index increases. For water it is 48½°, for flint glass 38°41', and for diamond 23°42'. Thus all the light incident from two complete quadrants, or 180°, in the case of diamond, is condensed into an angular space of 47°22' (twice 23°42') by refraction. Coupled with its great refraction, are the great dispersive and great reflective powers of diamond; hence the extraordinary radiance of the gem, both as regards white light and prismatic light.
§ 5. Velocity of Light. Aberration. Principle of least Action.
In 1676 a great impulse was given to optics by astronomy. In that year Olav Roemer, a learned Dane, was engaged at the Observatory of Paris in observing the eclipses of Jupiter's moons. The planet, whose distance from the sun is 475,693,000 miles, has four satellites. We are now only concerned with the one nearest to the planet. Roemer watched this moon, saw it move round the planet, plunge into Jupiter's shadow, behaving like a lamp suddenly extinguished: then at the other edge of the shadow he saw it reappear, like a lamp suddenly lighted. The moon thus acted the part of a signal light to the astronomer, and enabled him to tell exactly its time of revolution. The period between two successive lightings up of the lunar lamp he found to be 42 hours, 28 minutes, and 35 seconds.
This measurement of time was so accurate, that having determined the moment when the moon emerged from the shadow, the moment of its hundredth appearance could also be determined. In fact, it would be 100 times 42 hours, 28 minutes, 35 seconds, after the first observation.
Roemer's first observation was made when the earth was in the part of its orbit nearest Jupiter. About six months afterwards, the earth being then at the opposite side of its orbit, when the little moon ought to have made its hundredth appearance, it was found unpunctual, being fully 15 minutes behind its calculated time. Its appearance, moreover, had been growing gradually later, as the earth retreated towards the part of its orbit most distant from Jupiter. Roemer reasoned thus: 'Had I been able to remain at the other side of the earth's orbit, the moon might have appeared always at the proper instant; an observer placed there would probably have seen the moon 15 minutes ago, the retardation in my case being due to the fact that the light requires 15 minutes to travel from the place where my first observation was made to my present position.'
This flash of genius was immediately succeeded by another. 'If this surmise be correct,' Roemer reasoned, 'then as I approach Jupiter along the other side of the earth's orbit, the retardation ought to become gradually less, and when I reach the place of my first observation, there ought to be no retardation at all.' He found this to be the case, and thus not only proved that light required time to pass through space, but also determined its rate of propagation.
The velocity of light, as determined by Roemer, is 192,500 miles in a second.
For a time, however, the observations and reasonings of Roemer failed to produce conviction. They were doubted by Cassini, Fontenelle, and Hooke. Subsequently came the unexpected corroboration of Roemer by the English astronomer, Bradley, who noticed that the