В потоке больших данных есть информация, которая имеет долгосрочное стратегическое значение; некоторые данные пригодны только для немедленного и тактического использования, а часть данных вообще бесполезна. Самое главное в процессе укрощения больших данных – определить, какие фрагменты относятся к той или иной категории.
Примером могут служить метки радиочастотной идентификации (RFID), речь о которых пойдет в главе 3. Они размещаются на палетах с товарами в процессе их перевозки; если это дорогие товары, метками помечают каждый из них. Со временем станет правилом помечать метками отдельные товары. Сегодня в большинстве случаев это связано с большими затратами, поэтому метки ставятся на каждой палете. Такие метки упрощают процесс отслеживания местоположения палет, позволяют определить, где они загружаются, разгружаются и хранятся.
Представьте себе склад с десятками тысяч палет. На каждом из них находится RFID-метка. Каждые 10 секунд считывающие устройства опрашивают склад: «Кто здесь?» Каждая палета отвечает: «Я здесь». Посмотрим, как в этом случае можно использовать большие данные.
Палета прибывает сегодня и сообщает: «Это палета 123456789. Я здесь». Каждые 10 секунд в течение следующих трех недель, пока находится на складе, палета будет снова и снова сообщать: «Я здесь. Я здесь. Я здесь». По завершении каждого опроса следует проанализировать все ответы на предмет изменения статуса палеты. Таким образом, можно подтвердить то, что изменения были ожидаемыми, и принять меры, если палета неожиданно изменила статус.
После того как палета покинула склад, она больше не отвечает на запрос считывающего устройства. После подтверждения того, что отбытие палеты было ожидаемым, все промежуточные записи с ответом «я здесь» не имеют значения. По-настоящему важны только дата и время появления палеты на складе, а также дата и время ее отбытия. Если между этими датами прошло три недели, то имеет смысл сохранить только две временные метки, связанные с прибытием и отбытием палеты. Ответы, полученные с интервалом в 10 секунд, говорящие: «Я здесь. Я здесь. Я здесь», не имеют какой-либо долгосрочной ценности, однако собрать их было необходимо. Необходимо было проанализировать каждый ответ в момент его создания, однако долгосрочной ценности они не имеют, поэтому их спокойно можно удалить после отбытия палеты.
Одна из главных задач при укрощении больших данных – определить фрагменты, которые имеют ценность. Большие данные содержат информацию, пригодную для долгосрочного стратегического применения; данные, которые могут использоваться в краткосрочной перспективе, а также данные, которые вообще ничего не значат. Удаление множества данных может показаться странным, однако при работе с большими данными это в порядке вещей. Вам потребуется время, чтобы к этому привыкнуть.
Если необработанные большие данные можно сохранить в течение