Существование Бога. Ричард Суинберн. Читать онлайн. Newlib. NEWLIB.NET

Автор: Ричард Суинберн
Издательство:
Серия: Философская теология: современность и ретроспектива
Жанр произведения: Философия
Год издания: 1979
isbn: 978-5-9551-0717-2
Скачать книгу
достоверным ¬p, например, если из q следует ¬p15. P(p|q) + Pp|q) = 1. Таким образом, если P(p|q) > 1/2, то P(p|q) > Pp|q), и в случае q более вероятно, что p, чем ¬p. Следовательно, для фонового знания k доказательство от e к h будет правильным З-индуктивным доказательством, если и только если P (h|e&k) > P(h|k), или правильным П-индуктивным доказательством, если и только если P(h|e&k) > 1/2. Граница между новыми данными и фоновыми данными может быть проведена где угодно: часто бывает удобно включить все данные, проистекающие из опыта, в e и рассматривать k в качестве того, что в теории подтверждения называется «простыми тавтологическими данными», то есть, фактически, это все наши другие иррелевантные знания.

      Мои дальнейшие рассуждения будут следующими. Пусть h обозначает нашу гипотезу «Бог существует». Пусть e1, e2, e3 и т. д. обозначают различные суждения, которые люди высказывают как свидетельства в пользу или против существования Бога и конъюнкция которых составит e. Пусть e1 будет обозначать суждение «существует физическая вселенная». Тогда мы имеем доказательство от e1 к h – космологическое доказательство. Рассматривая это доказательство, я сделаю допущение, что у нас нет никаких иных релевантных данных, и таким образом, k будет простыми тавтологическими данными. Тогда P(h|e1&k) означает вероятность существования Бога, заданную существованием физической вселенной, а также простыми тавтологическими данными, которыми впоследствии можно будет пренебречь. Если P(h|e1&k) > 1/2, то доказательство от e1 к h является достаточным П-индуктивным доказательством. Если P(h|e1&k) > P(h|k), то это доказательство является достаточным З-индуктивным доказательством. Однако при рассмотрении второго доказательства, от e2 (которое предполагает наличие во вселенной темпоральной упорядоченности) я буду использовать k для обозначения посылки первого доказательства e1, и тогда P(h|e2&k) будет означать вероятность существования Бога, заданную существованием физической вселенной, а также ее темпоральной упорядоченностью. А при рассмотрении третьего доказательства, от e3, k будет обозначать посылку второго доказательства (e1&e2). И так далее. Таким образом, все релевантные данные будут с необходимостью подкреплять нашу оценку [вероятности]. Я рассмотрю одиннадцать доказательств. Я буду утверждать, что для большинства тех en, где n = 1, … 11, P(h|en&k) > P(h|k), то есть это доказательство является достаточным З-индуктивным доказательством существования Бога, и что два из этих доказательств (одно за и одно против) не имеют силы (в этих случаях будет P(h|en&k) = P(h|k)), а также что одно доказательство против существования Бога имеет силу (P(h|en&k) < P(h|k)), когда en – это проявление зла. Ключевой вопрос, к которому мы со временем придем, это вопрос о том, справедливо ли, что P(h|e11&k) > 1/2.

      Используя эти символы теории подтверждения, я не предполагаю, что выражение вида P(p|q) всегда имеет именно численное значение. Оно может быть выражено просто через