19 Griffiths, A.J.F., Miller, J.H., Suzuki, D.T. et al. (eds.) (2000). An Introduction to Genetic Analysis, 7e. New York: W.H. Freeman.
20 Han, L. (2004). Genetically modified microorganisms. In: The GMO Handbook: Genetically Modified Animals, Microbes, and Plants in Biotechnology (ed. S.R. Parekh), 29–51. Totowa, NJ: Humana Press.
21 Jeandet, P., Vasserot, Y., Chastang, T., and Courot, E. (2013). Engineering microbial cells for the biosynthesis of natural compounds of pharmaceutical significance. Biomed. Res. Int. 2013 https://doi.org/10.1155/2013/780145.
22 Jurtshuk, P. (1996). Bacterial metabolism. In: Medical Microbiology (ed. S. Baron). Galveston (TX): University of Texas Medical Branch at Galveston.
23 Kalaichelvan, P.T. and Pandi, I.A. (2019). Bioprocess Technology. MJP Publisher.
24 Kieliszek, M., Kot, A.M., Bzducha‐Wróbel, A. et al. (2017). Biotechnological use of Candida yeasts in the food industry: a review. Fungal Biol. Rev. 31: 185–198.
25 Koubaa, M., Imatoukene, N., Drévillon, L., and Vorobiev, E. (2020). Current insights in yeast cell disruption technologies for oil recovery: a review. Chem. Eng. Process. Process Intensif. 150: 107868. https://doi.org/10.1016/j.cep.2020.107868.
26 Koutinas, A.A. (2017). Fermented dairy products. In: Current Developments in Biotechnology and Bioengineering (eds. A. Pandey, M.Á. Sanromán, G. Du, et al.), 3–24. Elsevier.
27 Kutyna, D.R., Varela, C., Stanley, G.A. et al. (2012). Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl. Microbiol. Biotechnol. 93: 1175–1184.
28 Lee, S.Y. and Kim, H.U. (2015). Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33: 1061–1072.
29 Lin, X., Fan, J., Wen, Q. et al. (2014). Optimization and validation of a GC–FID method for the determination of acetone‐butanol‐ethanol fermentation products. J. Chromatogr. Sci. 52: 264–270.
30 Madigan, M., Martinko, J., Bender, K. et al. (2015). Brock Biology of Microorganisms, 15e. Boston: Pearson.
31 Matassa, S., Boon, N., Pikaar, I., and Verstraete, W. (2016). Microbial protein: future sustainable food supply route with low environmental footprint. Microb. Biotechnol. 9: 568–575.
32 Misra, K.C. (2011). Introduction to Geochemistry: Principles and Applications. Wiley Blackwell.
33 Navarrete‐Bolaños, J.L., Fato‐Aldeco, E., Gutiérrez‐Moreno, K. et al. (2013). A strategy to design efficient fermentation processes for traditional beverages production: prickly pear wine. J. Food Sci. 78: M1560–M1568.
34 Oka, T. (1999). Amino acids, production processes. In: Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation (eds. M.C. Flickinger and S.W. Drew), 89–100. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto: Wiley.
35 Otles, S. and Ozyurt, V.H. (2019). Probiotic and prebiotic beverages. In: Functional and Medicinal Beverages (eds. A.M. Grumezescu and A.M. Holban), 447–458. Academic Press.
36 Payne, C.M., Knott, B.C., Mayes, H.B. et al. (2015). Fungal cellulases. Chem. Rev. 115: 1308–1448.
37 Peris, D., Pérez‐Torrado, R., Hittinger, C.T. et al. (2018). On the origins and industrial applications of Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids. Yeast 35: 51–69. https://doi.org/10.1002/yea.3283.
38 Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R. et al. (2005). Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577–591.
39 Quintanilla, D., Hagemann, T., Hansen, K., and Gernaey, K.V. (2015). Fungal morphology in industrial enzyme production – modelling and monitoring. In: Filaments in Bioprocesses, Advances in Biochemical Engineering/Biotechnology (eds. R. Krull and T. Bley), 29–54. Cham: Springer International Publishing.
40 Raveendran, S., Parameswaran, B., Ummalyma, S.B. et al. (2018). Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 56: 16–30.
41 Ruijschop, R.M.A.J., Boelrijk, A.E.M., and te Giffel, M.C. (2008). Satiety effects of a dairy beverage fermented with propionic acid bacteria. Int. Dairy J. 18: 945–950.
42 Sanchez, S. and Demain, A.L. (2009). Microbial primary metabolites: biosynthesis and perspectives. In: Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology (ed. M.C. Flickinger), 1–16. American Cancer Society https://doi.org/10.1002/9780470054581.eib167.
43 Sindhu, R., Pandey, A., and Binod, P. (2017). Design and types of bioprocesses. In: Current Developments in Biotechnology and Bioengineering (eds. C. Larroche, M.Á. Sanromán, G. Du and A. Pandey), 29–43. Elsevier.
44 Smith, J.E. (2009). Biotechnology. Cambridge; New York: Cambridge University Press.
45 Sousa, F., Passarinha, L., and Queiroz, J.A. (2009). Biomedical application of plasmid DNA in gene therapy: a new challenge for chromatography. Biotechnol. Genet. Eng. Rev. 26: 83–116.
46 Vitorino, L.C. and Bessa, L.A. (2017). Technological microbiology: development and applications. Front. Microbiol. 8 https://doi.org/10.3389/fmicb.2017.00827.
47 Waites, M.J., Morgan, N.L., Rockey, J.S., and Higton, G. (2001). Microbial cell structure and function. In: Industrial Microbiology: An Introduction, 7–20. Wiley Blackwell.
48 Wilkins, M.R. and Atiyeh, H. (2012). Fermentation. In: Food and Industrial Bioproducts and Bioprocessing (ed. N.T. Dunford), 185–203. Wiley.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.