В 2007 г. бутылка из партии 1852 г. была выставлена на аукционе eBay со стартовой ценой $299. Продавец, у которого она хранилась в течение 50 лет, неправильно написал название пива, пропустив одну «р» в слове «Allsopp». Как следствие, предмет не обнаруживался поисковыми запросами любителей винтажного пива, так что поступило только две заявки. Из них победила заявка 25-летнего Даниэля Вудула, который предложил целых $304. Стремясь определить ценность покупки, Вудул тут же вновь выставил бутылку на продажу, но на этот раз с правильным названием. В ответ было подано 157 заявок с максимально предложенной ценой $503 300.
В этом случае одна пропущенная буква стоила полмиллиона долларов[11]. Это наглядный пример того, что потеря информации может привести к значительным последствиям. Как мы увидим далее, полмиллиона долларов – ничто по сравнению с убытками в других ситуациях, связанных с отсутствием данных. Они способны разрушать судьбы, уничтожать компании и, как в случае с Challenger, приводить к гибели людей. Короче говоря, отсутствующие данные важны.
В случае с Arctic Ale чуть большее внимание помогло бы избежать проблемы. Небрежность, безусловно, одна из самых распространенных причин появления темных данных, но далеко не единственная. Неприятный факт заключается в том, что данные могут стать темными по очень широкому ряду причин, и далее в книге мы увидим это.
Заманчиво считать темные данные исключительно тем, что можно было бы получить, но по каким-то причинам не удалось. Безусловно, это самый очевидный вид темных данных. Отсутствующие данные по заработной плате в опросе, в котором часть респондентов отказалась разглашать эту информацию, конечно, являются темными данными, но также ими является и уровень заработной платы безработных, которые не получают ее и, следовательно, просто не могут назвать. Ошибки измерения и неточности скрывают истинные значения; обобщая данные (например, вычисляя средние значения), мы теряем детали; неверные формулировки запросов искажают смысл того, что мы хотим узнать. В более общем понимании любую неизвестную характеристику некоей генеральной совокупности (статистики часто используют термин «параметр») можно рассматривать как темные данные.
Поскольку число возможных причин возникновения темных данных, по сути, не ограничено, знание того, на что следует обращать внимание, является чрезвычайно важным для предотвращения ошибок и просчетов. Именно с этой целью в нашей книге и представлено описание DD-типов. Они не охватывают все возможные причины (например, небрежность,