Machtmaschinen. Viktor Mayer-Schonberger. Читать онлайн. Newlib. NEWLIB.NET

Автор: Viktor Mayer-Schonberger
Издательство: Bookwire
Серия:
Жанр произведения: Изобразительное искусство, фотография
Год издания: 0
isbn: 9783867746526
Скачать книгу
da­von im sonnigen Phoenix, Arizona. Dort ist ein Teil der Fahrzeuge bereits im realen Robo­taxibetrieb ohne Sicherheits­fahrer unterwegs. Spätestens bei Fahrzeugen ohne Menschen als Back­up auf dem Fahrersitz ist dann eine Schwelle überschritten, von der die Alchemis­ten des Mittelalters nur hätten träumen können. Aus selbst­fahrenden Autos werden selbst­ler­­nende Au­tos. Den Rohstoff, mit dem sie sich selbst verbessern, erzeugen die Fahrzeuge selbst: maschinenlesbare Infor­matio­nen.

      Selbstlernende Maschinen

      Diese Form des Datenalchemismus ist die Königsdisziplin des mit Abstand wichtigsten Bereichs in der Entwicklung von sogenannter Künstlicher Intelligenz der letzten zehn Jahre: das Maschinelle Lernen. Informationstechnologisch ist »ML« ein historischer Durchbruch, der trotz allem Hype um sogenannte Künstliche Intelligenz in seiner Wirkung zurzeit eher unter- als überschätzt wird. Denn wenn aus Daten lernende Systeme nach einer ersten Trainingsphase die Daten selbst erzeugen, mit denen sie ihre Algorithmen weiter trainieren und die Anwendungen verbessern, bedeutet das eine Teilautomatisierung von Innovation. Wir werden im folgenden Kapitel intensiv da­­rauf eingehen, was dies für Marktkonzentration bedeutet. An dieser Stelle ist zunächst wichtig zu verstehen, warum Maschi­­nel­les Lernen Informationsasymmetrien in bisher ungekanntem Ausmaß verstärkt und Wissensvorsprünge für die Anbieter und Betreiber von aus Daten lernenden Systemen schafft, die für Nutzerinnen und Nutzer unangenehme Abhängigkeiten schafft, und die Vorsprünge für das Konkurrenzangebot kaum noch einholbar sind.

      Die Lernfortschritte der selbstlernend-selbstfahrenden Au­tos von Waymo und Baidu sind für den Datenalchemismus ein besonders eindrückliches Beispiel. Wir finden das Phänomen aber in ähnlicher Form in fast allen Anwendungen, deren digitale Maschinenräume von Kräften des Maschinellen Lernens betrieben werden. Mit jedem Suchwort, das wir bei einer Suchmaschine eingeben, lernt uns das System ein bisschen besser kennen. Mit jedem Klick auf einen Link geben wir der Suchmaschine das Feedback: Diese Information ist relevant für uns, jene nicht. Wenn wir gar nicht klicken, ist das natürlich auch ein wertvolles Signal, und je öfter wir und viele andere Menschen mit der Maschine suchen, desto besser kann das System seine Suchalgorithmen kalibrieren und uns (und allen anderen) mit höherer Wahrscheinlichkeit für uns relevante Suchergebnisse zuspielen. Die Empfehlungsalgorithmen der großen Onlinehändler funktionieren nach dem gleichen Prinzip. Sie sind de facto Produktsuchen, die Amazon oder Zalando freundlicherweise für uns übernehmen. Je mehr Kunden den Empfehlungen folgen (oder auch gerade nicht), desto besser kann das IT-System des Händlers mithilfe maschineller Muster­erkennung sein Sortiment optimieren, Preise kalkulieren und Marketingaktionen planen.

      Eine Krebsdiagnosesoftware, die auf Maschinellem Lernen fußt, wird mit jeder Diagnose besser, die sie stellt und deren Ergebnis maschinell lesbar nachgehalten und in das System zu­rückgefüttert wird. Die Betrugserkennungssysteme von Kre­dit­kartenanbietern lernen von jeder verdächtigen Transaktion, die sie blockieren oder autorisieren. Ein beraubter Kunde gibt in der Regel heftiges Feedback; wer an der Kasse mit der eigenen Karte wie ein Betrüger dasteht, ebenfalls. Je mehr Daten über Zahlungsausfälle ein Kredit-Scoring-System einer Bank kennt, desto genauer kann es vorhersagen, ob ein bestimmter Kreditantragsteller seinen Kredit voraussichtlich zurückzahlen wird und wie hoch der angebotene Zinssatz sein muss, damit sich das Geschäft für die Bank rechnerisch lohnt.

      Eine Spracherkennungssoftware versteht die menschliche Spra­che immer genauer, je öfter Menschen mit ihr gesprochen und fehlerhafte Eingaben korrigiert haben. Eine Smart Factory wird effizienter, je öfter die Maschinen in ihr interagieren, ihre Interaktionen aufzeichnen und die zentrale Steuerungssoftware die Lernerfahrungen daraus akkumuliert. Je mehr Verträge ein LegalBot prüft, desto öfter können wir uns den teuren Anwalt sparen. Warum? Weil moderne IT-Systeme ähnlich ler­nen wie wir Menschen. Sie sammeln Informationen, werten sie aus und ziehen dann die richtigen Schlussfolgerungen auf Grundlage von datenbasierten Prognosen. Durch eingebaute Feed­backschleifen automatisieren sie Informationsbeschaffung und Lerneffekte. Das Prinzip des Datenalchemismus bei aus Daten lernenden Systemen ist dabei aber nur die jüngste Volte einer viel größeren und tieferen Entwicklung der ökonomischen Machtverschiebung durch Informationstechnologie.

      Daten ungleich Öl

      Wir haben in den letzten Jahren viel über den Aufstieg der digitalen Superstarfirmen mit ihren agilen Organisationsformen und ihren disruptiven Geschäftsmodellen diskutiert. CEOs klas­sischer Unternehmen und ihre Beraterstäbe haben sich die Köpfe zerbrochen, wie sie dieses Erfolgsmodell übernehmen könn­ten, und nannten diesen Versuch dann »digitale Transformation«. In diesen Diskussionen fielen zwar regelmäßig und in inflationärer Verwendung die Begriffe »Big Data«, »Ad­vanced Analytics« und »Künstliche Intelligenz«. Doch zugleich blie­ben die fundamentalen Unterschiede in der Nutzung von maschinenlesbaren Informationen zwischen digitalen Unternehmen mit datenzentrierten Produkten und Geschäftsmodellen einerseits und großen traditionellen Unternehmen auf dem Weg zur digitalen Transformation andererseits seltsam un­reflektiert.

      In klassischen Industrien wie Maschinenbau und Au­tomobil, bei Finanzdienstleistern und Telekommunikationsunternehmen, bei Restaurantketten oder beim stationärem Han­del, von Konsumgüterherstellern oder Logistikern wurden und werden Daten meist als eine Ressource verstanden und genutzt, um Prozesse auf vorgegebene Weise zu optimieren, Produkte inkrementell zu verbessern, oder als Schmiermittel für die Marketingmaschine, also um Kundinnen und Kunden mehr Produkte zu verkaufen. Das ist natürlich sinnvoll. Wo im­mer ein Unternehmen mit digitalen Systemen Effizienz stei­­gern, Kosten sparen und Umsätze erhöhen kann, sollte es dies tun. Aber dieser Ansatz funktioneller Datennutzung unterscheidet sich grundlegend von der Herangehensweise der im Internetzeitalter entstandenen Erfolgsunternehmen.

      Die heute wertvollsten Unternehmen haben Daten weder als strukturelle Überforderung noch als Kostenfaktor für Kostensenkung oder messbaren Hebel zur Absatzsteigerung gese­hen. Für sie sind Daten die wichtigste Investition in die ei­gene Zukunft. Es ist kein Zufall, dass die windschiefe Metapher von den »Daten als das neue Öl« beim Management alter Industrien so beliebt war wie das Mantra der digitalen Transformierer, das da lautet: »Wir müssen die Datenschätze heben.« Das Bild passte in die Denkschablonen alter Wertschöpfungslogiken. Ein vorhandener Rohstoff muss bloß gefördert werden, um damit eine Maschine anzufeuern, die irgendetwas vorantreibt und da­bei dann Geld verdient. Die digitalen Champions wiederum haben sich hingegen nie als ExxonMobils oder BPs des Datenzeitalters gesehen. Sie wussten, dass Daten nicht wie Öl oder Schätze irgendwo tief in der Erde schlummern und darauf war­ten, gefördert oder gehoben zu werden. Sie wussten, dass Daten durch Gebrauch und unter Entstehung hoher externalisierter Kosten nicht verbrennen, sondern ihr Wert gerade durch unterschiedliche, mehrfache und kombinierte Nutzung steigt. Und ihnen war früh klar, dass der größte wirtschaftliche Mehrwert nicht durch den Verkauf der Daten zu erzielen ist, sondern dadurch, dass Unternehmen mit maschinenlesbaren Informationen exklusives Herrschaftswissen schaffen. Mit diesem Herrschaftswissen lassen sich dann hochprofita­ble Geschäftsmodelle betreiben.

      Die Hermeneutik der Plattform

      Das strategische Ziel und die wirtschaftshistorische Leistung der heute datenreichen Unternehmen bestand darin, mit hohem Aufwand technische Strukturen und Software zu schaffen, die Informationsflüsse auf ihre Server leiten und ihnen die exklusive Nutzung dieser Informationen sichern. Wo immer wir in die Wirkmechanismen der digitalen Ökonomie bli­cken, finden wir genau dieses Muster beim Aufbau von Informa­tions­asymmetrien. Besonders offenkundig ist dieser Wirk­mecha­nis­mus bei den mächtigen digitalen Plattformen, die sich als Ver­mittler in so vielen Branchen zwischen Kunde/Kundin und Anbieter/Anbieterin geschoben haben.

      Bei Apple und Google laufen alle Informationen über Um­sätze und Nutzung aller digitalen Anwendungen ihrer App-­Sto­res zusammen. Das Ergebnis ist in diesem Fall weniger alche­mistisch als hermeneutisch. Das Detail gibt nur im Zusammenhang des großen Ganzen sein Geheimnis preis, aber das große Ganze kann nur sehen, wer alle Details kennt. Die Betreiber der App-Stores kennen die einzelnen Kunden, ihre Präferenzen und ihr Verhalten. Aus der Summe dieser Informa­tionen aggregieren sie das Bild des Gesamtmarktes und können ihr Geschäftsmodell daraufhin ausrichten, sei es für den Vertrieb von Apps, von Bezahlinhalten wie Musik, Videos und Spielen oder für personalisierte Werbung.

      Amazon