Дросселированный поток жидкости в регулирующих клапанах приводит либо к вскипанию, либо, что чаще, к кавитации. Классический подход к объяснению дросселированного потока заключается в следующем. Если предположить, что поток увеличивается линейно с квадратным корнем перепада давления, ΔP до тех пор, пока ΔP достигает перепада дросселированного давления, ΔPдроссел., и тут же становится полностью дросселированным без дальнейшего увеличения расхода. (См. пунктирные линии на Рис. 1.12). Термин, используемый здесь для разделительной линии между недросселированным потоком и дросселированным потоком (ΔPдроссел.), – это терминология, используемая в версии 2012 года (Стандарт стабилизации определения размера регулирующей арматуры Международного общества автоматизации (ISA)). До этого, не было определения разделяющей линии, так что производители арматуры придумывали свои названия.
Рис. 1.12. Реальная ситуация того, как поток дросселируется постепенно, а не мгновенно
Некоторые примеры: ΔPдопустимое, ΔPконечное, ΔPmax и ΔPкритическое. На самом деле, есть определенное количество округлений графика в точке ΔPдросселируемое, как показано на рисунке 1.12.
На кривую дросселирования влияет геометрия отверстия арматуры. В качестве примера, см. сегментный клапан на рис. 1.13, имеющий значительную переходную кривую дросселирования. Для сегментного шарового клапана диапазон дросселирования имеет значительный переход из-за конфигурации прохождения потока. Сегментный кран имеет зону неравномерного потока. Ограниченный поток на узких концах зоны неравномерного потока создает локально более высокий сдвиг напряжения, вызывающие кавитацию (и, в конечном счете, дросселирование), чтобы сначала произойти в этих областях. В конце концов, вся зона будет дросселировать по мере того, как перепад давления в арматуре увеличивается. В результате неравномерного распределения кавитационного потенциала, дросселирование происходит в разных местах внутри клапана с различным расходом. Это вызывает дросселирование в переходной области.
Рис. 1.13. Влияние геометрии отверстия клапана на длину перехода от недросселированного потока к полностью дросселированному
В отличие от сегментного шарового крана седельный линейный клапан имеет очень симметричную зону потока, поэтому дросселирование начнется примерно на всем пути расхода в то же время, в результате чего более образуется короткая переходная область между недросселированным потоком и полностью дросселированным потоком.
Затруднения при определении графика расхода
Нет признанного метода для расчета формы закругленной части графика, поэтому уравнения ISA изображают пунктирные линии на рисунке 1.12. В течение многих лет классический подход (пунктирные линии) был использован для прогнозирования кавитационных повреждений. Предполагалось, что если фактическое падение давления было меньше, чем ΔPдросселированное, то кавитационных повреждений