49 49 Ellington, A.D. and Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346: 818–822. https://doi.org/10.1038/346818a0.
50 50 Iliuk, A.B., Hu, L., and Tao, W.A. (2011). Aptamer in bioanalytical applications. Anal. Chem. 83: 4440–4452. https://doi.org/10.1021/ac201057w.
51 51 Panigaj, M., Johnson, M.B., Ke, W. et al. (2019). Aptamers as modular components of therapeutic nucleic acid nanotechnology. ACS Nano 13: 12301–12321. https://doi.org/10.1021/acsnano.9b06522.
52 52 Goud, K.Y., Reddy, K.K., Satyanarayana, M. et al. (2019). A review on recent developments in optical and electrochemical aptamer‐based assays for mycotoxins using advanced nanomaterials. Mikrochim. Acta 187: 29. https://doi.org/10.1007/s00604-019-4034-0.
53 53 Li, F., Yu, Z., Han, X., and Lai, R.Y. (2019). Electrochemical aptamer‐based sensors for food and water analysis: a review. Anal. Chim. Acta 1051: 1–23. https://doi.org/10.1016/j.aca.2018.10.058.
54 54 Pehlivan, Z.S., Torabfam, M., Kurt, H. et al. (2019). Aptamer and nanomaterial based FRET biosensors: a review on recent advances (2014–2019). Mikrochim. Acta 186: 563. https://doi.org/10.1007/s00604-019-3659-3.
55 55 Seelig, G., Soloveichik, D., Zhang, D.Y., and Winfree, E. (2006). Enzyme‐free nucleic acid logic circuits. Science 314: 1585–1588. https://doi.org/10.1126/science.1132493.
56 56 Bao, G., Rhee, W.J., and Tsourkas, A. (2009). Fluorescent probes for live‐cell RNA detection. Annu. Rev. Biomed. Eng. 11: 25–47. https://doi.org/10.1146/annurev-bioeng-061008-124920.
57 57 Benenson, Y., Gil, B., Ben‐Dor, U. et al. (2004). An autonomous molecular computer for logical control of gene expression. Nature 429: 423–429. https://doi.org/10.1038/nature02551.
58 58 Zhang, X., Potty, A.S., Jackson, G.W. et al. (2009). Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green. J. Mol. Recognit. 22: 154–161. https://doi.org/10.1002/jmr.917.
59 59 Masuda, I., Igarashi, T., Sakaguchi, R. et al. (2017). A genetically encoded fluorescent tRNA is active in live‐cell protein synthesis. Nucleic Acids Res. 45: 4081–4093. https://doi.org/10.1093/nar/gkw1229.
60 60 Culler, S.J., Hoff, K.G., and Smolke, C.D. (2010). Reprogramming cellular behavior with RNA controllers responsive to endogenous proteins. Science 330: 1251–1255. https://doi.org/10.1126/science.1192128.
61 61 Tan, X., Constantin, T.P., Sloane, K.L. et al. (2017). Fluoromodules consisting of a promiscuous RNA aptamer and red or blue fluorogenic cyanine dyes: selection, characterization, and bioimaging. J. Am. Chem. Soc. 139: 9001–9009. https://doi.org/10.1021/jacs.7b04211.
62 62 Paige, J.S., Wu, K.Y., and Jaffrey, S.R. (2011). RNA mimics of green fluorescent protein. Science 333: 642–646. https://doi.org/10.1126/science.1207339.
63 63 Song, W., Strack, R.L., Svensen, N., and Jaffrey, S.R. (2014). Plug‐and‐play fluorophores extend the spectral properties of Spinach. J. Am. Chem. Soc. 136: 1198–1201. https://doi.org/10.1021/ja410819x.
64 64 Dolgosheina, E.V., Jeng, S.C., Panchapakesan, S.S. et al. (2014). RNA mango aptamer‐fluorophore: a bright, high‐affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9: 2412–2420. https://doi.org/10.1021/cb500499x.
65 65 Song, W., Filonov, G.S., Kim, H. et al. (2017). Imaging RNA polymerase III transcription using a photostable RNA‐fluorophore complex. Nat. Chem. Biol. 13: 1187–1194. https://doi.org/10.1038/nchembio.2477.
66 66 Constantin, T.P., Silva, G.L., Robertson, K.L. et al. (2008). Synthesis of new fluorogenic cyanine dyes and incorporation into RNA fluoromodules. Org. Lett. 10: 1561–1564. https://doi.org/10.1021/ol702920e.
67 67 Babendure, J.R., Adams, S.R., and Tsien, R.Y. (2003). Aptamers switch on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc. 125: 14716–14717. https://doi.org/10.1021/ja037994o.
68 68 Bouhedda, F., Autour, A., and Ryckelynck, M. (2017). Light‐up RNA aptamers and their cognate fluorogens: from their development to their applications. Int. J. Mol. Sci. 19 https://doi.org/10.3390/ijms19010044.
69 69 Ouellet, J. (2016). RNA fluorescence with light‐up aptamers. Front. Chem. 4: 29. https://doi.org/10.3389/fchem.2016.00029.
70 70 Grate, D. and Wilson, C. (1999). Laser‐mediated, site‐specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. U.S.A. 96: 6131–6136. https://doi.org/10.1073/pnas.96.11.6131.
71 71 Khisamutdinov, E.F., Li, H., Jasinski, D.L. et al. (2014). Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res. 42: 9996–10004. https://doi.org/10.1093/nar/gku516.
72 72 Warner, K.D., Chen, M.C., Song, W. et al. (2014). Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21: 658–663. https://doi.org/10.1038/nsmb.2865.
73 73 Kellenberger, C.A., Chen, C., Whiteley, A.T. et al. (2015). RNA‐based fluorescent biosensors for live cell imaging of second messenger cyclic di‐AMP. J. Am. Chem. Soc. 137: 6432–6435. https://doi.org/10.1021/jacs.5b00275.
74 74 Filonov, G.S., Moon, J.D., Svensen, N., and Jaffrey, S.R. (2014). Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence‐based selection and directed evolution. J. Am. Chem. Soc. 136: 16299–16308. https://doi.org/10.1021/ja508478x.
75 75 Breaker, R.R. (2002). Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13: 31–39. https://doi.org/10.1016/s0958-1669(02)00281-1.
76 76 Zivarts, M., Liu, Y., and Breaker, R.R. (2005). Engineered allosteric ribozymes that respond to specific divalent metal ions. Nucleic Acids Res. 33: 622–631. https://doi.org/10.1093/nar/gki182.
77 77 Kolpashchikov, D.M. (2005). Binary malachite green aptamer for fluorescent detection of nucleic acids. J. Am. Chem. Soc. 127: 12442–12443. https://doi.org/10.1021/ja0529788.
78 78