DNA- and RNA-Based Computing Systems. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9783527825417
Скачать книгу
target="_blank" rel="nofollow" href="#ulink_7ca7a628-dfc7-5e88-a754-d2b4227d9aa3">Figure 4.5 Design of molecular beacon (MB)‐based DNA logic gates. (a) MB probe fluoresces upon bind complementary analyte. (b) The 4WJ‐1 design for a YES gate. Oligoethylene glycol linkers triethylene glycol (TEG) are shown as dashed lines.

      Source: Based on Lake et al. [63]

      . (c) The 4JW‐2 design of YES gate.

      Source: Based on Cornett et al. [64].

4WJ DNA logic gates and tile-integrated DNA circuits. (a) 4WJ NOT gate: a DNA strand (NOT) holds the opened MB probe in the absence of an input. (b) Two-input 4WJ AND gate. The gate consists of ANDa, ANDb, ANDc, and an MB probe. The five-stranded 4WJ association is formed only in the presence of both inputs I1 and I2. (c) Two-input 4WJ NOR gate integrated into a DNA tile. NOT1, NOT2, ANDa, and ANDb strands are attached to a DNA crossover (X) tile at the indicated points.

      Majority of the DNA logic gates, however, explore only two to five layers of integration, which faces significant signal reduction as the signal propagates along the chain of communicating gates. At least partially, this problem can be mitigated by localizing logic gates in a specific order and at precise positions on a DNA tile for efficient communication as it is used in electronic processors. An energy input is required to “push” the signal through the DNA association, an approach that has not been realized yet. Alternatively, parallel computation using multiple small‐scale integrated circuits can be explored. While all the technical problems can be eventually addressed given the appropriate time and effort, the future of molecular computation depends on the practical usability of DNA computers. Indeed, it becomes clear that computers based on hybridization of DNA strands cannot compete with electronic devices in terms of the processing speed due to much slower rates of DNA hybridization than electron transfer in semiconductor materials. Instead, biocompatible and biodegradable DNA‐based logic constructs can be used for manipulating biological molecules and objects (cells), which can eventually find applications in addressing biological and biomedical problems.

      1 1 Malvino, A.P. and Brown, J.A. (1993). Digital Computer Electronics, 3e. Lake Forest: Glencoe.

      2 2 de Silva, A.P. and Uchiyama, S. (2007). Nat. Nanotechnol. 2: 399–410.

      3 3 de Silva, A.P., Leydet, Y., Lincheneau, C., and McClenaghan, N.D. (2006). J. Phys. Condens. Matter 18: S1847–S1872.

      4 4 Ball, P. (2000). Nature 406: 118–120.

      5 5 Katz, E. (2017). Anal. Bioanal. Chem. 409: 81–94.

      6 6 Katz, E. (2015). Curr. Opin. Biotechnol. 34: 202–208.

      7 7 Schneider, H.J. (2017). ChemPhysChem 18: 2306–2313.

      8 8 Benenson, Y. (2016). Chimia (Aarau) 70: 392–394.

      9 9 Erbas‐Cakmak, S., Kolemen, S., Sedgwick, A.C. et al. (2018). Chem. Soc. Rev. 47: 2228–2248.

      10 10 Adleman, L.M. (1994). Science 266: 1021–1024.

      11 11 Stojanovic, M.N., Stefanovic, D., and Rudchenko, S. (2014). Acc. Chem. Res. 47: 1845–1852.

      12 12 Fu, T., Lyu, Y., Liu, H. et al. (2018). Trends Biochem. Sci. 43: 547–560.

      13 13 Ariga, K., Nishikawa, M., Mori, T. et al. (2019). Sci. Technol. Adv. Mater. 20: 51–95.

      14 14 Stojanovic, M.N., Mitchell, T.E., and Stefanovic, D. (2002). J. Am. Chem. Soc. 124: 3555–3561.

      15 15 Saghatelian, A., Völcker, N.H., Guckian, K.M. et al. (2003). J. Am. Chem. Soc. 125: 346–347.

      16 16 Okamoto, A., Tanaka, K., and Saito, I. (2004). J. Am. Chem. Soc. 126: 9458–9463.

      17 17 Yoshida, W. and Yokobayashi, Y. (2007). Chem. Commun. 14: 195–197.

      18 18 Penchovsky, R. and Breaker, R.R. (2005). Nat. Biotechnol. 23: 1424–1433.

      19 19 He, H.Z., Chan, D.S., Leung, C.H., and Ma, D.L. (2013). Nucleic Acids Res. 41: 4345–4359.

      20 20 Kahan‐Hanum, M., Douek, Y., Adar, R., and Shapiro, E. (2013). Sci. Rep. 3: 1535.

      21 21 Li, T., Lohmann, F., and Famulok, M. (2014). Nat. Commun. 5: 4940.

      22 22 Guo, Y., Zhou, L., Xu, L. et al. (2014). Sci. Rep. 4: 7315.

      23 23 Fan, D., Wang, K., Zhu, J. et al. (2015). Chem. Sci. 6: 1973–1978.

      24 24 Green, A.A., Kim, J., Ma, D. et al. (2017). Nature 548: 117–121.

      25 25 Gao, J., Liu, Y., Lin, X. et al. (2017). Sci. Rep. 7: 14014.

      26 26 He, K., Li, Y., Xiang, B. et al. (2015).