27 27 Conn, R.E., Kolstad, J.J., Borzelleca, J.F. et al. (1995). Safety assessment of polylactide (PLA) for use as a food‐contact polymer. Food and Chemical Toxicology 33 (4): 273–283.
28 28 Harada, M., Ohya, T., Iida, K. et al. (2007). Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. Journal of Applied Polymer Science 106 (3): 1813–1820.
29 29 Babu, R.P., O'Connor, K., and Seeram, R. (2013). Current progress on bio‐based polymers and their future trends. Progress in Biomaterials 2 (1): 8.
30 30 Auras, R., Lim, L.T., Selke, S.E.M., and Tsuji, H. (2010). Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. Wiley, ISBN: 978‐0‐470‐29366‐9.
31 31 Relinque, J.J., de León, A.S., Hernández‐Saz, J. et al. (2019). Development of surface‐coated polylactic acid/polyhydroxyalkanoate (PLA/PHA) nanocomposites. Polymers 11 (3).
32 32 Rocca‐Smith, J.R., Pasquarelli, R., Lagorce‐Tachon, A. et al. (2019). Toward sustainable PLA‐based multilayer complexes with improved barrier properties. ACS Sustainable Chemistry & Engineering 7 (4): 3759–3771.
33 33 Torres‐Giner, S., Montanes, N., Fombuena, V. et al. (2018). Preparation and characterization of compression‐molded green composite sheets made of poly(3‐hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology 37 (5): 1305–1315.
34 34 Mutlu, G., Calamak, S., Ulubayram, K., and Guven, E. (2018). Curcumin‐loaded electrospun PHBV nanofibers as potential wound‐dressing material. Journal of Drug Delivery Science and Technology 43: 185–193.
35 35 Reddy, C.S.K., Ghai, R., Rashmi, and Kalia, V.C. (2003). Polyhydroxyalkanoates: an overview. Bioresource Technology 87 (2): 137–146.
36 36 Choi, J.‐I. and Lee, S.Y. (1997). Process analysis and economic evaluation for poly(3‐hydroxybutyrate) production by fermentation. Bioprocess Engineering 17 (6): 335–342.
37 37 Yeo, J.C.C., Muiruri, J.K., Thitsartarn, W. et al. (2018). Recent advances in the development of biodegradable PHB‐based toughening materials: approaches, advantages and applications. Materials Science and Engineering: C 92: 1092–1116.
38 38 McChalicher, C.W.J. and Srienc, F. (2007). Investigating the structure–property relationship of bacterial PHA block copolymers. Journal of Biotechnology 132 (3): 296–302.
39 39 Keshavarz, T. and Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology 13 (3): 321–326.
40 40 Khosravi‐Darani, K. and Bucci, D.Z. (2015). Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chemical and Biochemical Engineering Quarterly 29 (2): 275–285.
41 41 Requena, R., Vargas, M., and Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal 92: 185–193.
42 42 Torres‐Giner, S., Hilliou, L., Melendez‐Rodriguez, B. et al. (2018). Melt processability, characterization, and antibacterial activity of compression‐molded green composite sheets made of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life 17: 39–49.
43 43 Herrera, R., Franco, L., Rodríguez‐Galán, A., and Puiggalí, J. (2002). Characterization and degradation behavior of poly(butylene adipate‐co‐terephthalate)s. Journal of Polymer Science Part A: Polymer Chemistry 40 (23): 4141–4157.
44 44 Li, G., Shankar, S., Rhim, J.‐W., and Oh, B.‐Y. (2015). Effects of preparation method on properties of poly(butylene adipate‐co‐terephthalate) films. Food Science and Biotechnology 24 (5): 1679–1685.
45 45 Witt, U., Einig, T., Yamamoto, M. et al. (2001). Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44 (2): 289–299.
46 46 Fukushima, K., Wu, M.‐H., Bocchini, S. et al. (2012). PBAT based nanocomposites for medical and industrial applications. Materials Science and Engineering: C 32 (6): 1331–1351.
47 47 Xing, Q., Ruch, D., Dubois, P. et al. (2017). Biodegradable and high‐performance poly(butylene adipate‐co‐terephthalate)–lignin UV‐blocking films. ACS Sustainable Chemistry & Engineering 5 (11): 10342–10351.
48 48 Wang, X., Peng, S., Chen, H. et al. (2019). Mechanical properties, rheological behaviors, and phase morphologies of high‐toughness PLA/PBAT blends by in‐situ reactive compatibilization. Composites Part B: Engineering 173: 107028.
49 49 Someya, Y., Sugahara, Y., and Shibata, M. (2005). Nanocomposites based on poly(butylene adipate‐co‐terephthalate) and montmorillonite. Journal of Applied Polymer Science 95 (2): 386–392.
50 50 Chivrac, F., Kadlecova, Z., Pollet, E., and Avérous, L. (2006). Aromatic copolyester‐based nano‐biocomposites: elaboration, structural characterization and properties. Journal of Polymers and the Environment 14: 393–401.
51 51 Mondal, D., Bhowmick, B., Mollick, M.M.R. et al. (2014). Antimicrobial activity and biodegradation behavior of poly(butylene adipate‐co‐terephthalate)/clay nanocomposites. Journal of Applied Polymer Science 131 (7): 40079.
52 52 Al‐Itry, R., Lamnawar, K., and Maazouz, A. (2014). Reactive extrusion of PLA, PBAT with a multi‐functional epoxide: physico‐chemical and rheological properties. European Polymer Journal 58: 90–102.
53 53 Zehetmeyer, G., Meira, S.M.M., Scheibel, J.M. et al. (2016). Influence of melt processing on biodegradable nisin‐PBAT films intended for active food packaging applications. Journal of Applied Polymer Science 133 (13).
54 54 Sousa, G.M., Soares Júnior, M.S., and Yamashita, F. (2013). Active biodegradable films produced with blends of rice flour and poly(butylene adipate co‐terephthalate): effect of potassium sorbate on film characteristics. Materials Science and Engineering: C 33 (6): 3153–3159.
55 55 Succinity. 2016. Biobased Polybutylene Succinate (PBS) ‐ an attractive polymer for biopolymer compounds.
56 56 Xu, J. and Guo, B.‐H. (2010). Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnology Journal 5 (11): 1149–1163.
57 57 Doug, S. (2010). Bioplastics: Technologies and Global Markets. BCC research reports PLS050A.
58 58 Ravenstijn, J. (2010). The State‐of‐the‐Art on Bioplastics: Products, Markets, Trends and Technologies. Polymedia.
59 59 Bajpai, P. (2019). Biobased Polymers: Properties and Applications in Packaging. Elsevier Science.
60 60 Vytejčková, S., Vápenka, L., Hradecký, J. et al. (2017). Testing of polybutylene succinate based films for poultry meat packaging. Polymer Testing 60: 357–364.
61 61 Jacquel, N., Freyermouth, F., Fenouillot, F. et al. (2011). Synthesis and properties of poly(butylene succinate): efficiency of different transesterification catalysts. Journal of Polymer Science Part A: Polymer Chemistry 49 (24): 5301–5312.
62 62 Eslami, H. and Kamal, M. (2013). Elongational rheology of biodegradable poly(lactic acid)/poly[(butylene succinate)‐co‐adipate] binary blends and poly(lactic acid)/poly[(butylene succinate)‐co‐adipate]/clay ternary nanocomposites. Journal of Applied Polymer Science 127: 2290–2306.
63 63 Liu, L., Yu, J., Cheng, L., and Qu, W. (2009). Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing 40 (5): 669–674.
64 64 Liu, L., Yu, J., Cheng, L., and Yang, X. (2009). Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability 94 (1): 90–94.
65 65 Zhao, P., Liu, W., Wu, Q., and Ren, J. (2010). Preparation, mechanical, and thermal properties of biodegradable polyesters/poly(lactic