Коррекция факторов, лимитирующих спортивный результат. Олег Семёнович Кулиненков. Читать онлайн. Newlib. NEWLIB.NET

Автор: Олег Семёнович Кулиненков
Издательство: ЛитРес: Самиздат
Серия:
Жанр произведения: Медицина
Год издания: 2020
isbn:
Скачать книгу
и осмотическую составляющую в виде неравномерного распределения ионов по разным сторонам клеточной мембраны. Все 3 составляющие равнозначны и взаимозаменяемы.

      Мышечные клетки располагают двумя энергопреобразующими механизмами (системами): дыхательной цепью и системой гликолиза. Регуляция работы каждой из систем и их взаимодействие в значительной степени реализуется на молекулярном уровне. Обе системы относятся к полиферментным системам, где образование макроэргов является результатом прохождения длинной последовательности различных реакций.

      В силу особенностей мышечной ткани гликолитический процесс может выйти на оптимальный режим работ только через 40–50 секунд после начала мышечных сокращений. Дыхательная цепь ещё более инерционна и она по энергопроизводительности сравнивается с гликолизом через 70 сек после начала работы.

      Для начала работы (особенно в спринте) требуется огромная, причем быстро реализуемая энергия. Во время бега спринтеры расходуют свои внутренние резервы в виде макроэргических соединений. Первым резервным топливом являются молекулы АТФ. Запасенная в молекулах АТФ энергия может быть быстро преобразована в мышечную энергию. Имеющиеся запасы в тканях АТФ невелики и их хватает спринтеру лишь на 2 секунды бега. Затем начинает отдавать энергию другой энергетический буфер, находящийся в мышечных клетках – креатинфосфат. Его запасов хватает еще на 10–12 секунд. Поэтому на победу в спринте могут рассчитывать лишь те спортсмены, которые могут накапливать значительный резерв высокоэнергетических веществ в своих тканях – макроэргов (фосфагенов).

      Универсальным источником энергии в клетке (в том числе и мышечной) является свободная энергия макроэргической фосфатной связи аденозинтрифосфата (АТФ), освобождаемая при гидролизе (распаде) АТФ до АДФ и АМФ и неорганического фосфора. Если концентрация АТФ велика, то ингибируются ферменты, участвующие в его синтезе. При снижении концентрации АТФ ниже нормы и увеличении концентрации АДФ активируется дыхательная цепь, а при росте концентрации АМФ активируется система гликолиза.

      При систематическом повышенном энергетическом запросе включается более высокий, клеточный уровень регуляции энергопреобразующей системы, приводящий к индукции (а при снижении энергетического запроса к депрессии) синтеза новых ферментов для энергетических цепей. Индукция или депрессия ферментов является наиболее простым и экономичным способом адаптации клеток к новым условиям.

      Поддержание энергетического гомеостаза в клетке осуществляется в автоматическом режиме при сохранении постоянства состава внутриклеточной среды.

      Коррекция энергообеспечения

      Снижение энергообеспечения мышц возможно вследствие недостатка в организме макроэргов, фосфокреатина, глюкозы, гликогена, липидов, аминокислот; недостаточности вовлечения в процесс энергообеспечения липидов, протеинов; неэффективности динамики образования АТФ. Как следствие, происходит уменьшение мощности работы из-за снижения сократимости мышц.

      Коррекция энергообеспечения проводится как привнесением дополнительного