Coastal Ecosystems in Transition. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Физика
Год издания: 0
isbn: 9781119543565
Скачать книгу
S.W., Pagnotta, R., & Cross, F.A. (1999). The Chesapeake Bay and Northern Adriatic Sea drainage basins: Land‐cover and nutrient export. In T.C. Malone, A. Malej, L.W. Harding Jr., N. Smodlaka, R.E. Turner (Eds.), Ecosystems at the land‐sea margin: Drainage basin to coastal sea (Coastal and Estuarine Studies, Vol. 55, pp. 7–27). Washington, DC: American Geophysical Union.

      66 Sekulić, B., Martinis, M. & Nađ, K. (2004). Estimate of sea loading by pollutants originating from the littoral counties in the Republic of Croatia. Chemistry and Ecology, 20(6), 437–447. https://doi:10.1080/02757540412331304199

      67 Sharpley, A., Jarvie, H.P., Buda, A., May, L., Spears, B., & Kleinman, P. (2013). Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. Journal of Environmental Quality, 42(5), 1308–1326. https://doi:10.2134/jeq2013.03.0098

      68 Shenk, G.W., & Linker, L.C. (2013). Development and application of the 2010 Chesapeake Bay Watershed Total Maximum Daily Load Model. Journal of the American Water Resources Association, 49(5), 1042–1056. https://doi:10.1111/jawr.12109

      69 Shields, C.A., Band, L.E., Law, N., Groffman, P.M., Kaushal, S.S., Savvas, K., et al. (2008). Streamflow distribution of non‐point source nitrogen export from urban‐rural catchments in the Chesapeake Bay watershed. Water Resources Research, 44(9). https://doi:10.1029/2007wr006360

      70 Sinha, E., Michalak, A.M., & Balaji, V. (2017). Eutrophication will increase during the 21st century as a result of precipitation changes. Science, 357(6349), 405–408. https://doi:10.1126/science.aan2409

      71 Stachowitsch, M. (2014). Preface “Coastal hypoxia and anoxia: a multi‐tiered holistic approach.” Biogeosciences, 11(8), 2281–2285. https://doi:10.5194/bg‐11‐2281‐2014

      72 Teodosiu, C., Barjoveanu, G., & Teleman, D. (2003). Sustainable water resources management 1. River basin management and the EC Water Framework Directive. Environmental Engineering and Management Journal, 2(4), 377–394.

      73 Tesi, T., Miserocchi, S., Acri, F., Langone, L., Boldrin, A., Hatten, J.A. & Albertazzi, S. (2013). Flood‐driven transport of sediment, particulate organic matter, and nutrients from the Po River watershed to the Mediterranean Sea. Journal of Hydrology, 498, 144–152. https://doi:10.1016/j.jhydrol.2013.06.001

      74 Testa, J.M., Li, Y., Lee, Y.J., Li, M., Brady, D.C, Di Toro, D.M., et al. (2014). Quantifying the effects of nutrient loading on dissolved O2 cycling and hypoxia in Chesapeake Bay using a coupled hydrodynamic–biogeochemical model. Journal of Marine Systems, 139, 139–158. https://doi:10.1016/j.jmarsys.2014.05.018

      75  Testa, J.M., Lyubchich, V., & Zhang, Q. (2019). Patterns and trends in Secchi disk depth over three decades in the Chesapeake Bay estuarine complex. Estuaries and Coasts, 42(4), 927–943. https://doi:10.1007/s12237‐019‐00547‐9

      76 The EU.WATER Project (2010). Transnational integrated management of water resources in agriculture for European water emergency control (47 pp.).

      77 Thompson, S.E., Basu, N.B., Lascurain Jr., J., Aubeneau, A., & Rao, P.S.C. (2011). Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resources Research, 47W00J05. https://doi:10.1029/2010WR009605

      78 US Department of Agriculture, & US. Environmental Protection Agency (1999). Unified national strategy for animal feeding operations. Washington, DC.

      79 US Environmental Protection Agency (2000). Fact Sheet 1.0—Stormwater Phase II Final Rule: An overview. Washington, DC.

      80 US Environmental Protection Agency (2010). Chesapeake Bay Total Maximum Daily Load for nitrogen, phosphorus and sediment. Annapolis, MD.

      81 US Geological Survey (2018). Surface‐water data for the nation. http://dx.doi.org/10.5066/F7P55KJN

      82 Van Meter, K.J., Basu, N.B. & Van Cappellen, P. (2017). Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochemical Cycles, 31(1), 2–23. https://doi:10.1002/2016gb005498

      83 Van Meter, K.J., Van Cappellen, P., & Basu, N.B. (2018). Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science, 360(6387), 427–430. https://doi:10.1126/science.aar4462

      84 Vero, S.E., Basu, N.B., Van Meter, K., Richards, K.G., Mellander, P.‐E., Healy, M.G., & Fenton, O. (2017). Review: The environmental status and implications of the nitrate time lag in Europe and North America. Hydrogeology Journal, 26(1), 7–22. https://doi:10.1007/s10040‐017‐1650‐9

      85 Viaroli, P., Puma, F., & Ferrari, I. (2010). Aggiornamento delle conoscenze ecologiche sul bacino idrografico padano: una sintesi. Biologia Ambientale, 24, 7–19.

      86 Viaroli, P., Soana, E., Pecora, S., Laini, A., Naldi, M., Fano, E.A., & Nizzoli, D. (2018). Space and time variations of watershed N and P budgets and their relationships with reactive N and P loadings in a heavily impacted river basin (Po river, Northern Italy). Science of the Total Environment, 639, 1574–1587. https://doi:10.1016/j.scitotenv.2018.05.233

      87 Volf, G., Atanasova, N., Kompare, B. & Ožanić, N. (2013). Modeling nutrient loads to the northern Adriatic, Journal of Hydrology, 504, 182–193. https://doi:10.1016/j.jhydrol.2013.09.044

      88 Volf, G., Atanasova, N., Skerjanec, M., & Ozanic, N. (2018). Hybrid modeling approach for the northern Adriatic watershed management. Science of the Total Environment, 635, 353–363. https://doi:10.1016/j.scitotenv.2018.04.094

      89 Voulvoulis, N., Arpon, K.D., & Giakoumis, T. (2017). The EU Water Framework Directive: From great expectations to problems with implementation. Science of the Total Environment, 575, 358–366. https://doi:10.1016/j.scitotenv.2016.09.228

      90 Wagena, M.B., Collick, A.S., Ross, A.C., Najjar, R.G., Rau, B., Sommerlot, A.R., et al. (2018). Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay watershed, USA. Science of the Total Environment, 637–638, 1443–1454. https://doi:10.1016/j.scitotenv.2018.05.116

      91 Walter, R.C., & Merritts, D.J. (2008). Natural streams and the legacy of water‐powered mills. Science, 319(5861), 299–304. https://doi:10.1126/science.1151716

      92 Withers, P.J., & Jarvie, H.P. (2008). Delivery and cycling of phosphorus in rivers: A review. Science of the Total Environment, 400(1–3), 379–395. https://doi:10.1016/j.scitotenv.2008.08.002

      93 Zampieri, M., Scoccimarro, E., Gualdi, S., & Navarra, A. (2015). Observed shift towards earlier spring discharge in the main Alpine rivers.