Arc Flash Hazard Analysis and Mitigation. J. C. Das. Читать онлайн. Newlib. NEWLIB.NET

Автор: J. C. Das
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119709794
Скачать книгу
flash hood windows and face shields must meet projectile impact requirements of ANSI Z87.1, which specifies that a 6.4-mm (0.25 in) steel ball projectile must not penetrate the shield window or face shield at a velocity of 91.4 m/s (300 ft/s). It does not consider irregular-shaped projectiles or velocities that may be from 150 to 180 m/s (500–600 ft/s) and accompany an arc fault event. Thus, testing of arc-flash PPE was conducted using fragments instead of bullets [20]. Table 1.1 provides the test results. V50 signifies the velocity at which 50% of the projectiles penetrate the target specimen. This shows benefits of additional tightly woven para-armid ballistic fiber layer without weight increase.

      The following synopsis of tolerable currents is from IEEE Standard 80, Guide for Safety in AC Substation Grounding [21]:

      At 50 or 60 Hz, a current of 0.1 A can be lethal. The human body can tolerate slightly higher 25 HZ current and five times the DC current. At frequencies of 3000–10,000, even higher currents are tolerated. The most common physiological effect, stated in terms of increasing current, are: threshold of perception, muscular contraction, unconsciousness, fibrillation of heart, respiratory nerve blockage and burning [22], and IEC 604791 [23].

      The perception level is 1 mA. Currents in the range of 9–25 A may be painful and may make it difficult or impossible to release energized objects. In the range 60–100 mA, ventricular fibrillation, stoppage of heart, or inhibition of respiration might occur, causing injury or death. As shown by Dalziel and others [24], the nonfibrillating current of magnitude IB at durations ranging from 0.03 to 3.0 seconds is related to energy absorbed by the body, given by:

      (1.2)

      where ts is the time duration of the current in seconds, and SB is an empirical constant related to the energy through the body. Thus, reducing the arc flash incident energy through fast fault clearance times also reduces SB.

      Based upon the Dalziel and Lees’ studies [25], it is assumed that 99.5% of all persons can safely withstand, without ventricular fibrillation, the passage of current IB, given by:

      (1.3)

      Dalziel found that SB = 0.0135 for a body weight of 110 lbs (50 kg). Then:

      1.6.1 Resistance of Human Body

      For DC and AC 50 or 60 HZ currents, the human body can be approximated by a resistance. For the calculation of this resistance, the current path is considered from:

       one hand to both feet

       from one foot to another foot.

      NFPA 70E states that energized parts operating at less than 50 volts are not required to be de-energized to satisfy an “electrical safe working condition.” It further lays down that considerations should be given to the capacity of the source, any overcurrent protection between the source and the worker, and whether the work task related to the source operating at less than 50 volts increases exposure to electrical burns or to explosion from an electric arc.

      Reference [29] contends that 50 V is inadequate and calculates the maximum and minimum body resistance for path from arm-to-arm and arm-to-leg of the order of 300–500 Ω. IEC standard 604791 [23] recommends shock voltages of less than 50 V in some situations. Some jurisdictions, for example, in France, the safe voltage limit is accepted as 35–50 V. However, NFPA 70E qualifies the 50 V limits by additional cautionary statements as indicated above.