Искусство статистики. Как находить ответы в данных. Дэвид Шпигельхалтер. Читать онлайн. Newlib. NEWLIB.NET

Автор: Дэвид Шпигельхалтер
Издательство: Манн, Иванов и Фербер
Серия: МИФ Научпоп
Жанр произведения: Базы данных
Год издания: 2019
isbn: 9785001692508
Скачать книгу
распределения данных

      Свести распределение к единственному числу недостаточно – нужно иметь представление о разбросе данных (рассеивании, отклонении от среднего). Например, знание среднего размера обуви взрослого мужчины никак не поможет обувной фабрике определить, сколько пар обуви каждого размера производить. Один размер не годится для всех, что прекрасно иллюстрируют пассажирские кресла в самолетах.

      В табл. 2.1 приведены статистические данные для выборки по драже. Она предлагает три способа демонстрации разброса. Естественный вариант – размах[48], однако он крайне чувствителен к экстремальным значениям, таким как весьма странное предположение о наличии в банке 31 337 драже[49]. Напротив, на интерквартильный размах такие выбросы не очень влияют. Интерквартильный размах – это разность между третьим и первым квартилем (то есть 75-м и 25-м процентилем); иными словами, сюда входит «центральная половина» всех чисел, в нашем случае – от 1109 до 2599 драже. Ящик на диаграмме типа «ящик с усами» как раз и включает интерквартильный размах. Наконец, в качестве меры разброса широко используется стандартное (среднеквадратичное) отклонение. Но поскольку его сложнее вычислять и оно сильно подвержено влиянию выбросов, оно лучше всего подходит для симметричных и хорошо себя ведущих данных[50]. Например, удаление из выборки одного (почти гарантированно ошибочного) числа 31 337 приводит к уменьшению среднеквадратичного отклонения с 2422 до 1398[51].

      Таблица 2.1

      Характеристики выборки для 915 предположений о количестве драже в банке. Истинное число равно 1616

      Толпа в нашем маленьком эксперименте продемонстрировала значительную мудрость, даже несмотря на несколько странных ответов. Это показывает, что, хотя данные часто включают ошибки, выбросы и другие странные величины, их вовсе не обязательно выискивать и исключать. Кроме того, это указывает на полезность использования характеристик выборки, на которые не влияют даже столь эксцентричные наблюдения, как 31 337. Такие характеристики называются робастными (то есть устойчивыми) и включают медиану и интерквартильный размах. Наконец, эксперимент подчеркивает ценность обычного просмотра данных – урок, который будет подкреплен следующим примером.

      Разница между группами чисел

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Сноски

      1

      Издана на русском языке: Сильвер Н. Сигнал и шум.


<p>48</p>

Размах – это разность между наибольшим и наименьшим значением в выборке. Впрочем, у автора в таблице указываются только границы диапазона – как для размаха, так и для интерквартильного размаха. Прим. пер.

<p>49</p>

Почти наверняка это опечатка при наборе числа 1137, которое является числовым изображением слова leet, что на сетевом сленге означает «элитный» [Leet – это язык интернета, где латинские буквы заменяются похожими символами. Прим. пер.]; среди ответов было девять чисел 1337.

<p>50</p>

В качестве меры неравенства для сильно асимметричных распределений (например, доходов) используется коэффициент Джини, однако он сложен и не всегда интуитивно понятен.

<p>51</p>

Квадрат среднеквадратичного отклонения называется дисперсия: его трудно интерпретировать прямо, но с математической точки зрения это очень полезное понятие. [Дисперсия интерпретируется вполне естественно – это средний квадрат отклонения наблюдений от выборочного среднего. Прим. пер.].