Ecology. Michael Begon. Читать онлайн. Newlib. NEWLIB.NET

Автор: Michael Begon
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Биология
Год издания: 0
isbn: 9781119279310
Скачать книгу
most species, however, such ‘complete enumerations’ are impractical or impossible: observability – our ability to observe every individual present – is almost always less than 100%. Ecologists, therefore, must almost always estimate the number of individuals in a population rather than count them. They may estimate the numbers of aphids on a crop, for example, by counting the number on a representative sample of leaves, then estimating the number of leaves per square metre of ground, and from this estimating the number of aphids per square metre. For plants and animals living on the ground surface, the sample unit is generally a small area known as a quadrat (which is also the name given to the square or rectangular device used to demarcate the boundaries of the area on the ground). For soil‐dwelling organisms the unit is usually a volume of soil; for lake dwellers a volume of water; for many herbivorous insects the unit is one typical plant or leaf, and so on. Further details of sampling methods, and of methods for counting individuals generally, can be found in one of many texts devoted to ecological methodology (e.g. Krebs, 1999 ; Henderson & Southwood, 2016).

Schematic illustration of the indices of abundance can provide valuable information. The abundance of leopard frogs in ponds increases significantly with both the number of adjacent ponds that are occupied and the area of summer habitat within 1 km of the pond.

      Source: After Pope et al. (2000).

      counting births

      Counting births can be more difficult even than counting individuals. The formation of the zygote is often regarded as the starting point in the life of an individual. But it is a stage that is often hidden and extremely hard to study. We simply do not know, for most animals and plants, how many embryos die before ‘birth’, though in the rabbit at least 50% of embryos are thought to die in the womb, and in many higher plants it seems that about 50% of embryos abort before the seed is fully grown and mature. Hence, it is almost always impossible in practice to treat the start of life as the time of birth. In birds we may use the moment that an egg hatches; in mammals, perhaps, when an individual starts to be supported outside the mother as a suckling; and in plants we may use the germination of a seed as the birth of a seedling, although it is really only the moment at which a developed embryo restarts into growth after a period of dormancy. We need to remember that often half or more of a population will have died before they can be recorded as born!

      counting deaths

      Counting deaths poses as many problems. Dead bodies do not linger long in nature. Only the skeletons of large animals persist long after death. Seedlings may be counted and mapped one day and gone without trace the next. Mice, voles and soft‐bodied animals such as caterpillars and worms are digested by predators or rapidly removed by scavengers or decomposers. They leave no carcasses to be counted and no evidence of the cause of death. Capture–recapture methods can go a long way towards estimating deaths from the loss of marked individuals from a population (they are probably used as often to measure survival as abundance), but even here it is often impossible to distinguish loss through death and loss through emigration.

      

Schematic illustration of life histories for unitary organisms. (a) An outline life history for a unitary organism. (b) A semelparous annual species. (c) An iteroparous annual species. (d) A long-lived iteroparous species with seasonal breeding. (e) A long-lived species with continuous breeding. (f) A semelparous species living longer than a year, where the prereproductive phase may be a little over one year or longer, often much longer than this.

      semelparous and iteroparous life cycles