4 Chapter 4Figure 4.1. Signal-flow graph of the perceptron. Coefficients wi are the synapti...Figure 4.2. Signal-flow graph of the multilayer perceptron or feedforward networ...Figure 4.3. Principle of a convolutional networkFigure 4.4. Signal-flow graph of a hidden-layer recurrent neural network. The re...Figure 4.5. Graph of an “Elman”-type recurrent network. For a color version of t...Figure 4.6. Graph of a “Hopfield”-type recurrent network, for which the intercon...Figure 4.7. Principle of reservoir computing. The black arrows represent fixed-w...Figure 4.8. Modeling of the Pavlov experiment with three neurons (N1 “food”, N2 ...Figure 4.9. Current control by ion channel in a biological membrane and by a tra...Figure 4.10. Two “current-mirror” circuits enabling the relationship between I1 ...Figure 4.11. Diagram of a DPI composed of a differential pair and two current mi...Figure 4.12. Diagram of a DPI neuron. The yellow block models the leakage conduc...Figure 4.13. Circuit diagram, transfer function Vout(Vin) and voltage gain Gv of...Figure 4.14. Transfer function, Vout(Vin), of a subthreshold inverter (Vdd=200 m...Figure 4.15. Reduction of the effective subthreshold slope of a transistor throu...Figure 4.16. Electrical circuit of an axon-hillock artificial neuronFigure 4.17. Signal-flow graph of the amplifier (a), ideal transfer function (b)...Figure 4.18. Time variation of potentials Vin and Vout in the case of the simpli...Figure 4.19. Time variation of potentials Vin and Vout, obtained by SPICE simula...Figure 4.20. Block diagram of the electronic circuit simulating the ML modelFigure 4.21. Complete schematic diagram of the eight-transistor electronic circu...Figure 4.22. Simplified diagram of the ML neuron comprising only six transistors...Figure 4.23. Temporal variation in membrane potential and sodium and potassium c...Figure 4.24. Comparison between a very complete biomimetic neuron model (top) an...Figure 4.25. Dendritic tree of post-neuron, j. Vmi (or Vmk, respectively) repres...Figure 4.26. Definition of the memristance or fourth element based on state vari...Figure 4.27. V(t)–I(t) curves when I = I0sin(ωt), for a resistance, R, an induct...Figure 4.28. Architecture for the electronic implementation of the STDP. The two...Figure 4.29. Principle of implementation of the STDP. (a) Scenario where tpre < ...Figure 4.30. Circuit enabling highlighting of the stochastic resonance. Transcon...Figure 4.31. Response of the neuron as a function of noise power. The membrane p...Figure 4.32. Simulation of a cortical column by a reservoir-computing architectu...Figure 4.33. General architecture of the TrueNorth chip (a) and detailed archite...
Guide
1 Cover
Pages
1 v
2 ii
3 iii
4 iv
5 ix
6 xi
7 xii
8 xiii
9 xiv
10 1
11 2
12 3
13 4
14 5
15 6
16 7
17 8
18 9
19 10
20 11
21 12
22 13
23 14
24 15
25 16
26 17
27 18
28 19
29 20
30 21
31 22