29 Kuo, P.-C., Kuo, T.-H., and Su, C.-R. (2008). Cytotoxic principles and a-pyrone ring-opening derivatives of bufadienolides from Kalanchoe hybrida. Tetrahedron 64: 3392–3396.
30 Lai, Z.R., Peng, W.H., and Ho, Y.L. (2010). Analgesic and antiinflammatory activities of the methanol extract of Kalanchoe gracilis (L.) DC stem in mice. Am. J. Chin. Med. 38: 529–546.
31 Malan, D.F. and Neuba, D.F.R. (2011). Traditional practices and medicinal plants use during pregnancy by Anyi-Ndenye women (Eastern Cóted'Ivoire). Afr. J. Reprod. Health 15: 85–93.
32 Mandach, U., Plangger, N., Rist, L., and Zimmermann, R. (2006). Intravenous tocolysis with Bryophyllum pinnatum is better tolerated than beta-agonist application. Eur. J. Obstet. Gynecol Reprod. Biol. 124: 168–172.
33 Mehta Bhat, J.U. (1952). Studies on Indian medicinal plant II, bryophyllin, a new antibacterial substance from leaves of Bryophyllum calycinum Salsib. J. Univ. Bombay 21: 21–25.
34 Misra, S. and Dixit, S.N. (1979). Antifungal activity of leaf extract of some higher plants. Acta Bot. Ind. 7: 147–150.
35 Moniuszko-Szajwaj, B., Pecio, Ł., Kowalczyk, M., and Stochmal, A. (2016). New bufadienolides isolated from the roots of Kalanchoe daigremontiana (Crassulaceae). Molecules 21: 243.
36 Muzitano, M.F., Cruz, E.A., de Almeida, A.P. et al. (2006a). Quercitrin: an antileishmanial flavonoid glycoside from Kalanchoe pinnata. Planta Med. 72: 81–83.
37 Muzitano, M.F., Tinoco, L.W., Guette, C. et al. (2006b). The antileishmanial activity assessment of unusual flavonoids from Kalanchoe pinnata. Phytochemistry 67: 2071–2077.
38 Nadkarni, A.K. (1988). The Indian Materia Medica, vol. I. Bombay: Popular Prakashan.
39 Njoroge, G.N. and Bussmann, R.W. (2006). Diversity and utilization of antimalarial ethnophytotherapeutic remedies among the Kikuyus (Central Kenya). J. Ethnobiol. Ethnomed. 2: 8.
40 Ojewole, J.A.O. (2002). Antihypertensive properties of Bryophyllum pinnatum (Clam) Oken leaf extracts. Am. J. Hypertens. 15: 34–39.
41 Ojewole, J.A.O. (2005). Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J. Ethnopharmacol. 99: 13–19.
42 Okwu, D.E. and Nnamdi, F.U. (2011). Two novel flavonoids from Bryophyllum pinnatum and their antimicrobial activity. J. Chem. Pharm. Res. 3: 1–10.
43 Oufir, M., Seiler, C., Gerodetti, M. et al. (2015). Quantification of bufadienolides in Bryophyllum pinnatum leaves and manufactured products by UHPLC-ESIMS/MS. Planta Med. 81: 1190–1197.
44 Ozolua, R.I., Eboka, C.J., Duru, C.N., and Uwaya, D.O. (2010). Effects of aqueous leaf extract of Bryophyllum pinnatum on guinea pig tracheal ring contractility. Niger. J. Physiol. Sci. 25: 149–157.
45 Pal, S. and Nag Chaudhari, A.K. (1989). Preliminary studies on the anti-inflammatory and analgesic activities of Bryophyllum pinnatum. Med. Sci. Res. 17: 561–562.
46 Pal, S. and Nag Chaudhari, A.K. (1991). Studies on the anti-ulcer activity of a Bryophyllum pinnatum leaf extract in experimental animals. J. Ethnopharmacol. 33: 97–102.
47 Pal, S. and Nag Chaudhari, A.K. (1992). Further studies on anti-inflammatory profile of the methanolic fraction of the fresh leaf extract of Bryophyllum pinnatum. Fitoterapia 63: 451–459.
48 Pal, S., Sen, T., and Nag Chaudhari, A.K. (1999). Neuropsychopharmacological profile of the methanolic fraction of Bryophyllum pinnatum leaf extract. J. Pharm. Pharmacol. 51: 313–318.
49 Quazi, M., Sayyed, N., Sheikh, S. et al. (2011). Phytochemical analysis of chloroform extract of roots of Kalanchoe pinnata by hplc and gcms. Int. J. Pharm. Sci. Res. 2: 1693–1699.
50 Ragunathan, M. and Abay, S.M. (2009). Ethnomedicinal survey of folk drugs used in Bahidar Zurai district, Northwestern Ethiopia. Indian J. Tradit. Knowl. 8: 281.
51 Rasoanaivo, P., Galeffi, C., and Multari, G. (1993). Research on African medicinal plants. XXXI. Kalanchoside, a cytotoxic bufadienolidic glycoside from Kalanchoe tomentosa Baker. Gazzetta Chimica Italiana 123: 533–541.
52 Santos, M.R.A., Ferreira, M.G.R., Guimarães, M.C.M. et al. (2014). Callogenesis in leaves of Kalanchoe pinnata Lam. by 2,4-D and BA action. Rev. Bras. Plantas Med. 16: 760–764.
53 Schuler, V., Suter, K., Fürer, K. et al. (2012). Bryophyllum pinnatum inhibits detrusor contractility in porcine bladder strips – a pharmacological study towards a new treatment option of overactive bladder. Phytomedicine 19: 947–951.
54 Süsskind, M., Thürmann, P.A., and Lüke, C.T. (2012). Adverse drug reactions in a complementary medicine hospital: a prospective, intensified surveillance study. J. Evid. Based Complement Alternat. Med. 2012: 320760.
55 Tugume, P., Kakudidi, E.K., and Buyinza, M. (2016). Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. J. Ethnobiol. Ethnomed. 12: 5.
56 Wachter, R., Brenneisen, R., Hamburger, M. et al. (2011). Leaf press juice from Bryophyllum pinnatum (Lamarck) Oken induces myometrial relaxation. Phytomedicine 19: 74–82.
57 Wu, P.-L., Hsu, Y.-L., and Wu, T.-S. (2006). Kalanchosides A–C, new cytotoxic bufadienolides from the aerial parts of Kalanchoe gracilis. Org. Lett. 8: 5207–5210.
58 Yamagashi, T., Yan, X.-Z., Wu, R.-Y. et al. (1988). Structure and stereochemistry of bryophyllin-A, a novel potent cytotoxic bufadienolide orthoacetate from Bryophyllum pinnatum. Chem. Pharm. Bull. 36: 1615–1617.
59 Yamagishi, T., Haruna, M., Yan, X.Z. et al. (1989). Antitumor agents 110, Bryophyllin B, a novel potent cytotoxic bufadienolide from Bryophyllum pinnatum. J. Nat. Prod. 52: 1071–1079.
60 Yasir, F. and Waqar, M.A. (2011). Effect of indigenous plant extracts on calcium oxalate crystallization having a role in urolithiasis. Urol. Res. 39: 345–350.
61 Yemitan, O.K. and Salahdeen, H.M. (2005). Neurosedative and muscle relaxant activities of aqueous extract of Bryophyllum pinnatum. Fitoterapia 76: 187–193.
2.18 Camptotheca Species
2.18.1 Ethnopharmacological Properties and Phytochemistry
Camptotheca acuminata Decne (Fam. – Nyssaceae) is a deciduous tree endemic to China, and its bark and fruits have been used in folk medicine to treat cancer (Hisang et al. 1985; Tu et al. 2000; Lansiaux et al. 2001; Sun et al. 2001; Yang et al. 2002; Xu et al. 2003; Chen et al. 2004, 2013; Wang et al. 2004; He et al. 2006; Wu et al. 2007; Ye et al. 2007; Lan et al. 2010; Chen and Wang 2011; Song and Hu 2012; Lin et al. 2013, 2014), virus (Li et al. 2002b), and bacterial diseases (Li et al. 2018). The plant species showed the presence of camptothecin, ethyl caffeate, ursolic acid, betulinic acid, and inositol (Wu et al. 1985). Several tannins were isolated from C. acuminata, viz, camptothins A and B, cornusiin A, gemin D, tellimagrandin I, tellimagrandin II, 1,2,6-tri-o-galloyl-β-D-glucose, 1,2,3,6-tetra-o-galloyl-β-D-glucose, and pedunculagin. The identification of these compounds was confirmed by spectral data (Wu et al. 1980; Hatano et al. 1988). The camptothecin is normally accumulated in glandular trichomes of leaves and stems, and the concentration varies from species to species or season to season. Younger leaves, which are more photosynthetic, produce higher yield of camptothecin (Li et al. 2002a). Similarly, the accumulation of camptothecin was higher in mature fruits than in younger fruits. The camptothecin synthesis was observed in all organs as well as all the developmental stages of C. acuminata (Valletta et al. 2007). The methanolic extract of leaves and seeds demonstrated the presence of camptothecin as well as two its derivatives, hydroxycamptothecin and methoxycamptothecin (Zhang et al. 2007). The Camptotheca species have been evaluated for various categories of secondary metabolites including alkaloids, ellagic acids, flavonoids, sterols, terpenes, tannins, polyphenols and fatty acids, iridoid,