Wireless Connectivity. Petar Popovski. Читать онлайн. Newlib. NEWLIB.NET

Автор: Petar Popovski
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Техническая литература
Год издания: 0
isbn: 9781119576952
Скачать книгу
alt="images"/> for Zoya, images for Yoshi and images for Xia. An example of a TDMA allocation that can satisfy these data rate demands is depicted in Figure 1.5(c).

      In real systems, even in the case of static, circuit-switched allocation, it is unrealistic to assume that the logical channels and frames will stay ideally allocated for an indefinite period. For example, there might be a period of time in which Basil has no data to send to Zoya. If Zoya does not receive anything within several consecutive frames, she might easily get out of synchronization with Basil, which would result in irrecoverable errors. If the internal clocks of Zoya and Yoshi have a large relative drift, then Zoya might start to receive the data for Yoshi, not knowing that it is not intended for her. This cannot be prevented in the described simple TDMA scheme, since no resources are spent in sending control information after the initial, circuit-switched allocation. This control information would be used to describe what kind of data is sent in a particular slot. Therefore the periodic frame structure with fixed allocations to the users is only an approximation, as there must be flexibility to change the allocation in the frame when new devices are coming in the system, as well as to release slots when some devices are leaving the system.

      1.3.2 Frame Header for Flexible Time Division

      The frame header can further be enhanced in order to support time division between downlink and uplink traffic. For example, the frame headers in Figure 1.6 can contain information “This is a downlink frame”, such that Zoya knows that she should receive her data during the slot allocated to her. The reasoning for the uplink is analogous. Besides marking the frame start, now the header contains an additional, single bit of information to announce whether the frame is intended for downlink or uplink, respectively. Based on that, Zoya knows whether to receive or transmit during the slot that is allocated to her. Now the system can flexibly allocate resource for communication in both directions (uplink/downlink), such that the system operates with a flexible time-division duplex (TDD) mode.

      

      1.3.3 A Simple Two-Way System that Works Under the Collision Model

        link establishment frame

        start of a link termination

        this frame contains slots for downlink transmission

        this frame contains slots for uplink transmission.

      It should be noted that the number of users images is a predefined value, not conveyed through the header, such that we must assume it is known by Basil and the devices. Basil acts as a central controller and each header can be treated as a command transmitted from Basil to the devices. By default, each device is in a receive state (recall the hierarchy!) in order to detect the header and it subsequently takes action as instructed by the header.

      The header images