Electroanalytical Chemistry. Gary A. Mabbott. Читать онлайн. Newlib. NEWLIB.NET

Автор: Gary A. Mabbott
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9781119538585
Скачать книгу

      Source: Adapted with permission from Mousavi et al. [16]. Copyright 2016, American Chemical Society.

      Problems

      1 1.1 A bourbon distillery treats its discharge water (that remains behind after the whisky distills off) electrochemically to remove copper by plating it out on an electrode. After 42 days of continuous operation the electrode was replaced. It was weighed before sending it off to a copper recycling service and was found to have recovered 450 g of copper. Calculate the average current during its use assuming that 100% of the current was used in the reduction of Cu2+ to Cu metal.

      2 1.2 Consider a carbon electrode with a circular shape and a diameter of 3.0 mm dipping into a 0.1 M NaCl solution with a double layer capacitance of 20 μF/cm2. If the electrode receives a pulse of 1.0 × 1012 electrons, what will the change in voltage be at the electrode solution interface.

      3 1.3 The diffusion coefficient for NO3− ion is bigger than the diffusion coefficient for Na+ ion. Consider measuring the electrochemical cell potential in which a salt bridge is used between the reference solution containing 3 M NaNO3 and a sample containing 0.1 M NaNO3 supporting electrolyte solution. Explain whether there will be a junction potential and, if so, whether the cell potential with the junction potential will appear more positive or more negative than without it.

      4 1.4 Explain why ohmic loss is more likely to cause a serious error in a voltammetry experiment than it is for a potentiometric experiment.

      5 1.5 If 250 μA of current flows when a potentiostat applies −0.351 V to an electrochemical cell with a resistance of 152 Ω, what is the ohmic loss in voltage?

      6 1.6 Explain two different mechanisms that could cause the potential of a pH electrode to shift upon the addition of 3 g of KCl to 100 ml of a solution of 0.1 M HCl.

      7 1.7 How many moles of electrons would be required to change the voltage on a Pt circular disk electrode with a 2.0 mm diameter from −0.100 to −0.500 V in an electrolyte solution of 0.1 M KCl given the electrode solution capacitance of 24 μF/cm2?

      8 1.8 The average thermal energy (or the average kinetic energy) in three dimensions for a molecule is often give as 3/2 kT where k is Boltzmann's constant and T is the absolute temperature. How does the average thermal energy of a molecule at 25 °C compare with 1 eV?

      9 1.9 How does the energy of a blue photon at 400 nm compare to 1 eV?

      10 1.10 How does the dissociation energy of the carbon–carbon bond in an ethane molecule compare with 1 eV?

      1 1 National Research Council (1987). New Horizons in Electrochemical Science and Technology. Washington, DC: The National Academies Press.

      2 2 Pilla, A.A. (1974). Bioelectrochem. Bioenerg. 1 (1): 227.

      3 3 Xiao, T., Wu, F., Hao, J. et al. (2017). Anal. Chem. 89 (1): 300–313.

      4 4 Beni, V., Nilsson, D., Arven, P. et al. (2015). ECS J. Solid State Sci. Technol. 4 (10): S3001–S3005.

      5 5 Bockris, J.O.'.M. and Reddy, A.K.N. (1970). Modern Electrochemistry, vol. 2. New York, NY: Plenum.

      6 6 Gouy, G. (1910). Compt. Rend. 149: 654.

      7 7 Chapman, D.L. (1913). Phil. Mag. 25: 475.

      8 8 Stern, O. (1924). Z. Electrochem. 30: 508.

      9 9 Bard, A.J. and Faulkner, L.R. (2001). Electrochemical Methods, 2e. New York, NY: Wiley.

      10 10 Tang, J., Zhang, Y., and Bao, S. (2016). Minerals 6: 93. https://doi.org/10.3390/min6030093.

      11 11 Fuller, L.G., Goh, T.B., Oscarson, D.W., and Biliadaris, C.G. (1995). Clays Clay Miner. 43 (5): 533–539. Grim, R.E. (1962). Applied Clay Mineralogy. New York: McGraw‐Hill.

      12 12 Furukawa, Y., Watkins, J.L., Kim, J. et al. (2009). Geochem. Trans. 10 (2) https://doi.org/10.1186/1467-4866-10-2.

      13 13 Carlson, G.. Specific conductance as an output unit for conductivity readings. Technical Support, In‐Situ Inc. https://in-situ.com/wp-content/uploads/2015/01/Specific-Conductance-as-an-Output-Unit-for-Conductivity-Readings-Tech-Note.pdf.

      14 14 Vitha, M.F. (2017). Chromatography, Principles and Instrumentation. Hoboken, NJ: Wiley.

      15 15 Bakker, E. (2014) Fundamentals of Electroanalysis: 1. Potentials and Transport. ebook. https://itunes.apple.com/us/book/fundamentals-electroanalysis-1-potentials-transport/id933624613?mt=11.

      16 16 Mousavi, M.P.S., Saba, S.A., Anderson, E.L. et al. (2016). Anal. Chem. 88: 8706–8713.

      17 17 Zhu, S., Xia, M., Chu, Y. et al. (2019). Appl. Clay Sci. 169: 40–47.

      18 18 Samson, E., Marchand, J., and Snyder, K.A. (2003). Mater. Struct. 36: 156–165.

      19 19 Kielland, J. (1937). J. Am. Chem. Soc. 59: 1675.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7R1QUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFBy b29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAA AQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAA ABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJv b2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAA AABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAA AABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwg IGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQgVW50RiNSbHQAAAAA AAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JEYXRhYm9vbAEAAAAAUGdQc2Vu dW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAAAAAAAAAAAFRvcCBVbnRGI1Js dAAAAAAAAAAAAAAAAFNjbCBVbnRGI1