An Introduction to Molecular Biotechnology. Группа авторов. Читать онлайн. Newlib. NEWLIB.NET

Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Серия:
Жанр произведения: Химия
Год издания: 0
isbn: 9783527812882
Скачать книгу
repeats [IRs]), retrotransposons, and retroposons (transposons without LTRs) could be considered as examples of active egoistic genes (selfish DNA), which only have their own replication in mind. On the other hand, these mobile elements lead to genetic variability (an increased exon shuffling or enhancer shuffling) that in the long run can also have positive effects. In areas of Alu sequences, chromosomes exhibit increased rates of new orientation. When Alu elements jump into active genes, most of them are inactivated; conversely, sleeping genes can be activated, in that the skipped elements can function as enhancers. Finally, the selection of new characteristics is made available. Sexual isolation and type formation can be increased through this mechanism.

      The relative percentage of nonrepetitive DNA in bacteria is 100% and decreases in the higher developed eukaryotes: 70% in Drosophila, around 55% in mammals, and 33% in plants.

      4.1.2 Composition and Function of Chromosomes

Image described by caption. Image described by caption. Principle of telomere replication. The telomerase exhibits an RNA template, through which it binds a TA residue of DNA. The telomerase lengthens the DNA strands complementary to the RNA template. When a repeat region is synthesized, the telomerase jumps to the next TA residue and begins the synthesis. Image described by caption.

      When a gene is transcribed, the tight complex between DNA and histones must be loosened. This is achieved by diverse protein modifications, such as acetylation, methylation, phosphorylation, and adenosine triphosphate (ATP)‐dependent chromatin remodeling complexes (together with histone H1).

      Chromosomes are present in their more extended form in the interphase of the cell cycle. Only in metaphase do we see the well‐known metaphase chromosomes, in which the DNA is highly condensed (1000 times shorter than in the extended form; Figure 4.6).

      

      4.1.3 Mitosis and Meiosis