65 65 Ge, H., Xia, L., Zhou, X. et al. (2014). Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp. Journal of Microbiology 52 (2): 179–183.
66 66 Ahmadi, A., Zorofchian Moghadamtousi, S., Abubakar, S., and Zandi, K. (2015). Antiviral potential of algae polysaccharides isolated from marine sources: a review. BioMed Research International 2015: 1–10.
67 67 Kanekiyo, K., Hayashi, K., Takenaka, H. et al. (2007). Anti‐herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue‐green alga Nostoc flagelliforme. Biological and Pharmaceutical Bulletin 30 (8): 1573–1575.
68 68 Bafana, A. (2013). Characterization and optimization of production of exopolysaccharide from Chlamydomonas reinhardtii. Carbohydrate Polymers 95 (2): 746–752.
69 69 Guzmán, S., Gato, A., Lamela, M. et al. (2003). Anti‐inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum: anti‐inflammatory and immunomodulatory activities. Phytotherapy Research 17 (6): 665–670.
70 70 Gudmundsdottir, A.B., Omarsdottir, S., Brynjolfsdottir, A. et al. (2015). Exopolysaccharides from Cyanobacterium aponinum from the Blue Lagoon in Iceland increase IL‐10 secretion by human dendritic cells and their ability to reduce the IL‐17+RORγt+/IL‐10+FoxP3+ ratio in CD4+ T cells. Immunology Letters 163 (2): 157–162.
71 71 Halaj, M., Paulovičová, E., Paulovičová, L. et al. (2018). Biopolymer of Dictyosphaerium chlorelloides – chemical characterization and biological effects. International Journal of Biological Macromolecules 113: 1248–1257.
72 72 Mishra, A. and Jha, B. (2009). Isolation and characterization of extracellular polymeric substances from micro‐algae Dunaliella salina under salt stress. Bioresource Technology 100 (13): 3382–3386.
73 73 Goo, B.G., Baek, G., Jin Choi, D. et al. (2013). Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresource Technology 129: 343–350.
74 74 Trabelsi, L., Chaieb, O., Mnari, A. et al. (2016). Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. BMC Complementary and Alternative Medicine 16 (1): 210.
75 75 Liu, X., Zhang, M., Liu, H. et al. (2018). Preliminary characterization of the structure and immunostimulatory and anti‐aging properties of the polysaccharide fraction of Haematococcus pluvialis. RSC Advances 8 (17): 9243–9252.
76 76 Ishiguro, S., Uppalapati, D., Goldsmith, Z. et al. (2017). Exopolysaccharides extracted from Parachlorella kessleri inhibit colon carcinoma growth in mice via stimulation of host antitumor immune responses. PLoS One 12 (4): e0175064.
77 77 Lee, J.‐B., Hayashi, K., Hirata, M. et al. (2006). Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep‐sea water in Toyama Bay. Biological and Pharmaceutical Bulletin 29 (10): 2135–2139.
78 78 Torres, C.A.V., Marques, R., Antunes, S. et al. (2011). Kinetics of production and characterization of the fucose containing exopolysaccharide from Enterobacter A47. Journal of Biotechnology 156: 261–267.
79 79 Alves, V.D., Freitas, F., Torres, C.A.V. et al. (2010). Rheological and morphological characterization of the culture broth during exopolysaccharide production by Enterobacter sp. Carbohydrate Polymers 81: 758–764.
80 80 Kumar, S.A., Mody, K., and Jha, B. (2007). Bacterial exopolysaccharides – a perception. Journal of Basic Microbiology 47: 103–117.
81 81 Manivasagan, P. and Oh, J. (2016). Marine polysaccharide‐based nanomaterials as a novel source of nanobiotechnological applications. International Journal of Biological Macromolecules 82: 315–327.
82 82 Aimé, C. and Coradin, T. (2012). Nanocomposites from biopolymer hydrogels: blueprints for white biotechnology and green materials chemistry. Journal of Polymer Science Part B: Polymer Physics 50: 669–680.
83 83 Prasongsuk, S., Loytakul, P., Ali, I. et al. (2018). The current status of Aureobasidium pullulans in biotechnology. Folia Microbiologica 63 (2): 129–140.
84 84 Tabasum, S., Noreen, A., Maqsood, M.F. et al. (2018). A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. International Journal of Biological Macromolecules 120: 603–632.
85 85 Cheng, K., Demirci, A., and Catchmark, J.M. (2011). Pullulan: biosynthesis, production, and applications. Applied Microbiology and Biotechnology 92: 29–44.
86 86 Singh, R.S., Saini, G.K., and Kennedy, J.F. (2008). Pullulan: microbial sources, production and applications. Carbohydrate Polymers 73 (4): 515–531.
87 87 Giustina, G.D., Gandin, A., Brigo, L. et al. (2019). Polysaccharide hydrogels for multiscale 3D printing of pullulan scaffolds. Materials and Design 165: 107566.
88 88 Taskin, M., Erdal, S., and Canli, O. (2010). Utilization of waste loquat (Eriobotrya japonica Lindley) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii. Food Science and Biotechnology 19: 1069–1075.
89 89 Castillo, N.A., Valdez, A.L., and Fariña, J.I. (2015). Microbial production of scleroglucan and downstream processing. Frontiers in Microbiology 6: 1106.
90 90 Davison, P. and Mentzer, E. (1982). Polymer flooding in North‐sea reservoirs. Society of Petroleum Engineers Journal 22 (3): 353–362.
91 91 Pirri R., Gadioux J., Rivenq R. (1995) Scleroglucan gel applied in the oil industry. EP 1995/0484217A1.
92 92 Survase, S.A., Saudagar, P.S., Bajaj, I.B., and Singhal, R.S. (2007). Scleroglucan: fermentative production, downstream processing and applications. Food Technology and Biotechnology 45 (2): 107–118.
93 93 Asjadi, S.E., Nerderpel, Q.A., Cotiuga, I.M. et al. (2018). Biopolymer scleroglucan as an emulsion stabilizer. Colloids and Surfaces A: Physicochemical and Engineering Aspects 546: 326–333.
94 94 Zhang, Y., Kong, H., Fang, Y. et al. (2013). Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioactive Carbohydrates and Dietary Fibre 1 (1): 53–71.
95 95 Imeson, A. (ed.) (2010). Food Stabilisers, Thickening and Gelling Agents. Wiley Blackwell: United Kingdom.
96 96 Katzbauer, B. (1998). Properties and applications of xanthan gum. Polymer Degradation and Stability 59 (1–3): 81–84.
97 97 Rottava, I., Batesini, G., Silva, M.F. et al. (2009). Xanthan gum production and rheological behaviour using different strain of Xanthomonas sp. Carbohydrate Polymers 77 (1): 65–71.
98 98 Petri, D.F.S. (2015). Xanthan gum: a versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science 132 (23): 420–435.
99 99 Caldeira, I., Lüdtke, A., Tavares, F. et al. (2018). Ecologically friendly xanthan gum‐PVA matrix for solid polymeric electrolytes. Ionics 24: 413–420.
100 100 Tavares, F.C., Dörr, D.S., Pawlicka, A., and Avellaneda, C.O. (2018). Microbial origin xanthan gum‐based solid polymer electrolytes. Journal of Applied Polymer Science https://doi.org/10.1002/app.46229.
101 101 Naessens, M., Cerdobbel, A., Soetaert, W., and Vandamme, E.J. (2005). Leuconostoc dextransucrase and dextran: production, properties and applications. Journal of Chemical Technology and Biotechnology 80: 845–860.
102 102 Zhou, Q., Feng, F., Yang, Y. et al. (2018). Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. International Journal of Biological Macromolecules 107: 2234–2241.
103 103 Kamoun, E.A., Kenawy, E.S., and Chen, X. (2017). A review on polymeric hydrogel membranes for wound dressing applications: PVA‐based hydrogel dressings. Journal of Advanced Research 8: 217–233.
104 104 Maslakci, N.N., Ulusoy, S., Uygun,