Применительно к парадоксу Рассела, это означает, что приравнивается изначально неравное «содержит в себе то, что не содержит в себе» или, короче, «содержит = {не, содержит}». Другими словами, он только потому является парадоксом, что приравнивает один из элементов множества к множеству, содержащему не только этот элемент.
Конечно, есть разница c тем, как общепринято формируется множество. Так, запись «м = {a, s | b}» означает, что множество «m» задается свойством «b» и содержит элементы «а» и «s». Но вот смысл отношения целого и частей здесь иной: «a = {b, c}, «s = {b, p}».
Например, если s – синий квадрат, p – синий, b – квадрат, с – красный, a – красный квадрат, то «множество квадратов м = {красный квадрат, синий квадрат | быть квадратом}», «красный квадрат = {квадрат, красный}», «синий квадрат = {квадрат, синий}» (смотри рис. 1)
Семантическое целое имеет вид ориентированного (направленного) графа. Считается, что отношение симметричности не свойственно направленному графу. Но это верно лишь для случая, если рассматривать только вершины (состояния) и не учитывать «содержание» направленности ребер. … Пару (семантическое целое, части семантического целого) вполне можно рассматривать как симметричное отношение. Об этом следующие три статьи, которые были написаны ранее и в разное время – об отношении тождества как таковом (смотри рис. 2)
1.3. Образ = операнд, если оператор
Если из операнда при воздействии на него оператора следует только образ и ничто иное, то образ – то же самое, что операнд, при воздействии на операнд оператора.
Здесь и далее понятия образ, операнд и оператор соответствуют трактовке Эшби, а именно [2]:
«Итак, нечто (бледная кожа) подвержена действию некоторого фактора (солнечных лучей) и превращается в темную кожу. То, что испытывает действие (бледную кожу), мы будем называть операндом; действующий фактор будем называть оператором; а то, во что превращается операнд, будем называть образом».
Темная кожа – это бледная кожа, если на бледную кожу действуют солнечные лучи. Если же в этом предложении опустить оператор, то о равенстве не может быть и речи. Сам Эшби хоть и упоминает о тождестве, но лишь применительно к рефлексии [2]:
«Важным преобразованием, которое, впрочем, начинающий может не признать за преобразование является тождественное преобразование. При этом преобразовании не происходит никаких изменений, и каждый образ совпадает со своим операндом».
Здесь же важно то, что в общем случае образ не равен операнду, и то, что соблюдается симметричность: «образ = операнд, если оператор» и «операнд, если оператор = образ». … Это же и математическим языком для пары (Y, F(X)), где оператор соответствует понятию функции F, образ – значению Y, а операнд – аргументу X: «образ