Полученный интервал значений выглядит слишком широким. Но в его защиту приводят то, что он даёт хоть какое-то значение в сравнении его с изначальной позицией, которую занимали студенты «неужели это вообще можно определить?»
Данный метод позволял производившим расчёты людям понять, откуда берётся неопределённость. Какие переменные характеризовались наибольшей неопределённостью – процент семей, регулярно пользующихся услугами настройщиков пианино, частота настроек, число инструментов, которые можно настроить за день, или что-то ещё? Самый крупный источник неопределённости указывал на то, какие измерения позволят максимально снизить её.
Поиск ответа на «вопрос Ферми» не предполагает проведения новых наблюдений и поэтому не может считаться измерением. Это скорее оценка того, что вам уже известно о проблеме, это способ позволяющий несколько приблизиться к цели.
Этот способ является основополагающим для маркетологов и различных прогнозистов. Если они не владеют знаниями по определённому вопросу, то они задают себе вопрос: что же всё-таки известно о проблеме? И затем оценивают имеющуюся количественную информацию о предметах, которые выглядят для них неизменяемыми. Логика действий при использовании метода Ферми заключается в следующем утверждении: вы многое не знаете, но что-то же вы всё-таки знаете.
Существенным недостатком этого метода является критерий отбора. Разбежность значений у каждого человека будет очень большой. Величина, которая для одного человека кажется похожей на правду и приемлемой для другого может быть в десятки раз больше. А если этот расчет проводится в команде из нескольких людей, то это предполагает высокую конфликтность между участниками со всеми вытекающими последствиями в будущем.
Если же влияющие факторы известны аналитикам, то самым используемым методом для прогнозирования является регрессионный анализ. Он учитывает для будущего прогноза множество факторов, таких как: тренд, сезонность, ёмкость рынка, активность конкурентов и прочее. Но даже при таком подходе важным недостатком является то, что прогноз формируется на основе статических моделей. А из этого в последствии всплывает множество факторов, дающих погрешность в прогнозе. Аналитики при этом, чтобы подстраховать себя, заранее предупреждают, что статическая модель не будет корректной, а поэтому необходимы будут ручные корректировки. И затем начинают постоянно править свой же прогноз до периода его окончания. Тем самым фактически расписываясь в изначальной неправильности собственного прогноза. Руководству компании в этом случае приходится принять определённое допускаемое значение отклонения от прогноза, которое закладывает аналитик изначально.
Ошибки прогноза и последующие правки очень дорого