Неразрушающих типов детекторов не существует, поэтому после регистрации структура первоначальной частицы пропадает. Так, например, первоначальный фотон после взаимодействия с активным веществом детектора превращается в фотоэлектрон, или освободившийся электрон и изменённый фотон, или вообще образуется пара электрон-позитрон или пара разнополярных мюонов. А связано это с тем, что быстродействие процесса образования новой частицы вихроном (10-23 с) на много десятичных порядков больше процесса регистрации этих частиц любыми сверхбыстродействующими современными детекторами.
Для изучения возбуждённых кластеров ядер и струй в пространстве наиболее эффективны трековые детекторы частиц, позволяющие регистрировать множественное рождение частиц в условиях 4π-геометрии – пузырьковые камеры и некоторые другие. Однако по быстродействию (1–5 х 10-3 с) они далеко уступают времени образования микрочастиц вихронами – двадцать десятичных порядков.
Внешнее отрицательное электрическое поле замкнутого микровихрона свободного теплового электрона на поверхности Земли при захвате электрическим полем ядра атома способно в соответствии с законом де Бройля перестраивать свой волновод в часть одной из атомарных сферических оболочек с соответствующим размером и принципом Паули – назовём их дебройлевскими атомными микровихронами. Более высокочастотные замкнутые вихроны при соответствующих условиях способны создавать пары микрочастиц противоположных по электрическому заряду волноводов, образующих ядерные оболочки со структурой типа пи-ноль и к-ноль мезонов. Структура этих частиц аналогична мюонам с полуцелым спином. Это двадцатое свойство атомных, ядерных замкнутых и однополярных вихронов, принадлежащих электрону, мюонам или ядерным частицам.
Спин микрочастицы характеризуется состоянием магнитного монополя в