Наконец, поле источника перестало изменяться, и образовавшийся монополь больше ничто не связывает с первичным электрическим зерном, так как в этот момент изменение электрического поля около данного зерна-потенциала равно нулю. Всё множество таких магнитных микромонополей сливается (ток зарядки) в один в зоне индукции таким образом, что каждая сфера потенциалов занимает центрально[70] только своё место, увеличивая плотность потенциалов-зёрен на единицу длины спирали данного радиуса. Итак, первое свойство синфазных[71] магнитных микромонополей – слияние, но лишь в момент зарядки. Если магнитный поток потенциалов суммарного вихря достигает некоторого минимального квантового предела[72], то образуется элементарный магнитный заряд уже способный к свободному самодвижению. Это второе свойство – свободное самодвижение-разрядка (видео 2.1) элементарного монополя вихрона с рождением волновода (видео 2.2) спирали[73] электропотенциалов разного диаметра, созданных им. Этот процесс всегда сопровождается возбуждением противодействующего разрядке электрического монополя, выполняющего вспомогательную роль в процессе перезарядки кванта магнитного монополя в свободном вихроне для сохранения среднего значения энергии при полном квантовом преобразовании этого носителя индуктированной энергии в частице со спином равным единице.
Большая заслуга в первичных исследованиях пространственно-временного развития импульсного электрического разряда в вакууме, газе, жидкости и твёрдых телах принадлежит Воробьёву А. А., Ушакову В. Я., Месяцу Г. А. и другим учёным Томско-сибирской школы высоковольтников.
Предложенную здесь структуру формирования в пространстве волновода-трека движения магнитного монополя подтверждают и экспериментальные исследования этих авторов и в частности работы В. Я. Ушакова. В этих исследований был установлен ряд уникальных результатов с фотографиями разрядов с высоким разрешением, на которых видны спирали начала вихревых токов на волноводе, оставленного движением