The Music of the Primes: Why an unsolved problem in mathematics matters. Marcus Sautoy du. Читать онлайн. Newlib. NEWLIB.NET

Автор: Marcus Sautoy du
Издательство: HarperCollins
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 0
isbn: 9780007375875
Скачать книгу
a list of, say, the first 1,000 numbers. He began by writing out all the numbers from 1 to 1,000. He then took the first prime, 2, and struck off every second number in the list. Since all these numbers were divisible by 2, they weren’t prime. He then moved to the next number that hadn’t been struck off, namely 3. He then stuck off every third number after 3. Since these were all divisible by 3, they weren’t prime either. He kept doing this, just picking up the next number which hadn’t already been struck from the list and striking off all the numbers divisible by the new prime. By this systematic process he produced tables of primes. The procedure was later christened the sieve of Eratosthenes. Each new prime creates a ‘sieve’ which Eratosthenes uses to eliminate non-primes. The size of the sieve changes at each stage, but by the time he reaches 1,000 the only numbers to have made it through all the sieves are prime numbers.

      When Gauss was a young boy he was given a present – a book containing a list of the first several thousand prime numbers which had probably been constructed using these ancient number sieves. To Gauss, these numbers just tumbled around randomly. Predicting the elliptical path of Ceres would be difficult enough. But the challenge posed by the primes had more in common with the near-impossible task of analysing the rotation of bodies such as Hyperion, one of Saturn’s satellites, which is shaped like a hamburger. In contrast to the Earth’s Moon, Hyperion is far from gravitationally stable and spins chaotically. Even though the spinning of Hyperion and the orbits of some asteroids are chaotic, at least it is known that their behaviour is determined by the gravitational pull of the Sun and the planets. But for the primes, no one had the faintest idea what was pulling and pushing these numbers around. As he gazed at his table of numbers, Gauss could see no rule that told him how far to jump to find the next prime. Were mathematicians just going to have to accept these numbers as determined by Nature, set like stars in the night sky with no rhyme or reason? Such a position was unacceptable to Gauss. The primary drive for the mathematician’s existence is to find patterns, to discover and explain the rules underlying Nature, to predict what will happen next.

      The search for patterns

      The mathematician’s quest for primes is captured perfectly by one of the tasks we have all faced at school. Given a list of numbers, find the next number. For example, here are three challenges:

      1, 3, 6, 10, 15, …

      1, 1, 2, 3, 5, 8, 13, …

      1, 2, 3, 5, 7, 11, 15, 22, 30, …

      Numerous questions spring to the mathematical mind when faced with such lists. What is the rule behind the creation of each list? Can you predict the next number on the list? Can you find a formula that will produce the 100th number on the list without having to calculate the first 99 numbers?

      The first sequence of numbers above consists of what are called the triangular numbers. The tenth number on the list is the number of beans required to build a triangle with ten rows, starting with one bean in the first row and ending with ten beans in the last row. So the Nth triangular number is got by simply adding the first N numbers: 1 + 2 + 3 + … + N. If you want to find the 100th triangular number, there is a long laborious method in which you attack the problem head on and add up the first 100 numbers.

      Indeed, Gauss’s schoolteacher liked to set this problem for his class, knowing that it always took his students so long that he could take forty winks. As each student finished the task they were expected to come and place their slate tablets with their answer written on it in a pile in front of the teacher. While the other students began labouring away, within seconds the ten-year-old Gauss had laid his tablet on the table. Furious, the teacher thought that the young Gauss was being cheeky. But when he looked at Gauss’s slate, there was the answer – 5,050 – with no steps in the calculation. The teacher thought that Gauss must have cheated somehow, but the pupil explained that all you needed to do was put N = 100 into the formula Image and you will get the 100th number in the list without having to calculate any other numbers on the list on the way.

      Rather than tackling the problem head on, Gauss had thought laterally. He argued that the best way to discover how many beans there were in a triangle with 100 rows was to take a second similar triangle of beans which could be placed upside down on top of the first triangle. Now Gauss had a rectangle with 101 rows each containing 100 beans. Calculating the total number of beans in this rectangle built from the two triangles was easy: there are in total 101 × 100 = 10,100 beans. So one triangle must contain half this number, namely Image. There is nothing special here about 100. Replace it by N and you get the formula Image.

      The picture overleaf illustrates the argument for the triangle with 10 rows instead of 100.

      Instead of directly attacking his teacher’s problem, Gauss had found a different angle from which to view the calculation. Lateral thinking, turning the problem upside down or inside out to see it from a new perspective, is an immensely important theme in mathematical discovery and is one reason why people who can think like the young Gauss make good mathematicians.

      The second challenge sequence, 1, 1, 2, 3, 5, 8, 13, …, consists of the so-called Fibonacci numbers. The rule behind this sequence is that each new number is calculated by adding the two previous ones, for example, 13 = 5 + 8. Fibonacci, a mathematician in the thirteenth-century court in Pisa, had struck upon the sequence in relation to the mating habits of rabbits. He had tried to bring European mathematics out of the Dark Ages by proselytising the discoveries of Arabic mathematicians. He failed. Instead, it was the rabbits that immortalised him in the mathematical world. His model of the propagation of rabbits predicted that each new season would see the number of pairs of rabbits grow in a certain pattern. This pattern was based on two rules: each mature pair of rabbits will produce a new pair of rabbits each season, and each new pair will take one season to reach sexual maturity.

Image

      An illustration of Gauss’s proof of his formula for the triangular numbers.

      But it is not only in the rabbit world that these numbers prevail. This sequence of numbers crops up in all manner of natural ways. The number of petals on a flower invariably is a Fibonacci number, as is the number of spirals in a fir cone. The growth of a seashell over time reflects the progression of the Fibonacci numbers.

      Is there a fast formula like Gauss’s formula for the triangular numbers that will produce the 100th Fibonacci number? Again, at first sight it looks as though we might have to calculate all the previous 99 numbers since the way to get the 100th number is to add together the two previous ones. Is it possible that there is a formula that could give us this 100th number just by plugging the number 100 into the formula? This turns out be much trickier, despite the simplicity of the rule for generating these numbers.

      The formula for generating the Fibonacci numbers is based upon a special number called the golden ratio, a number which begins 1.618 03… Like the number π, the golden ratio is a number whose decimal expansion continues without end, demonstrating no patterns. Yet it encapsulates what many people down the centuries have regarded as perfect proportions. If you examine the canvases in the Louvre or the Tate Gallery, you’ll find that very often the artist will have chosen a rectangle whose sides are in a ratio of 1 to 1.618 03 … Experiment reveals that a person’s height when compared to the distance from their feet to their belly button favours the same ratio. The golden ratio is a number which appears in Nature in an uncanny fashion. Despite its chaotic decimal expansion, this number also holds the key to generating the Fibonacci numbers. The Nth Fibonacci number can be expressed by a formula built from the Nth power of the golden ratio.

      I will leave the third sequence of numbers, 1, 2, 3, 5, 7, 11, 15, 22, 30, …, as a teasing challenge which I will return to later. Its properties helped cement the fame of one of the most intriguing mathematicians of the twentieth century, Srinivasa Ramanujan, who had an extraordinary