The Music of the Primes: Why an unsolved problem in mathematics matters. Marcus Sautoy du. Читать онлайн. Newlib. NEWLIB.NET

Автор: Marcus Sautoy du
Издательство: HarperCollins
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 0
isbn: 9780007375875
Скачать книгу
observe that of all the mathematicians in Paris, Cauchy was the only one doing ‘pure mathematics’ whilst others ‘busy themselves exclusively with magnetism and other physical subjects … he is the only one who knows how mathematics should be done’.

      Cauchy was to land himself in trouble with the authorities in Paris for steering students away from practical applications of mathematics. The director of the École Polytechnique, where Cauchy was lecturing, wrote to him criticising him for his obsession with abstract mathematics: ‘It is the opinion of many persons that instruction in pure mathematics is being carried too far at the École and that such an uncalled for extravagance is prejudicial to the other branches.’ So it was perhaps no wonder that Cauchy’s work would be appreciated by the young Riemann.

      So exciting were these new ideas that Riemann almost became a recluse. His contemporaries were to see nothing of him while he waded through Cauchy’s output. Several weeks later Riemann resurfaced, declaring that ‘this is a new mathematics’. What had captured Cauchy and Riemann’s imagination was the emerging power of imaginary numbers.

      Imaginary numbers – a new mathematical vista

      The square root of minus one, the building block of imaginary numbers, seems to be a contradiction in terms. Some say that admitting the possibility of such a number is what separates the mathematicians from the rest. A creative leap is required to gain access to this bit of the mathematical world. At first sight it looks as if it has nothing to do with the physical world. The physical world seems to be built on numbers whose square is always a positive number. Imaginary numbers, however, are more than just an abstract game. They hold the key to the twentieth-century world of subatomic particles. On a larger scale, aeroplanes would not have taken to the skies without engineers taking a journey through the world of imaginary numbers. This new world provides a flexibility denied to those who stick to ordinary numbers.

      The story of how these new numbers were discovered begins with the need to solve simple equations. As the ancient Babylonians and Egyptians recognised, if seven fish were to be divided between three people, for example, fractional numbers – Image, and so on – would have to come into the equation. By the sixth century BC, the Greeks had discovered while exploring the geometry of triangles that these fractions were sometimes incapable of expressing the lengths of the sides of a triangle. Pythagoras’ theorem forced them to invent new numbers that couldn’t be written as simple fractions. For example, Pythagoras could take a right-angled triangle whose two shortest sides are one unit long. His famous theorem then told him that the longest side had length x, where x is a solution of the equation x2 = 12 + 12 = 2. In other words, the length is the square root of 2.

      Fractions are the numbers whose decimal expansions have a repeating pattern. For example, Image In contrast, the Greeks could prove that the square root of 2 is not equal to a fraction. However far you calculate the decimal expansion of the square root of 2, it will never settle down into such a repeating pattern. The square root of 2 starts off 1.414213562 … Riemann used to idle away the hours calculating more and more of these decimal places during his years in Göttingen. His record was thirty-eight places, no mean feat without a computer but perhaps more a reflection on the dull Göttingen nightlife and Riemann’s shy persona that this was his evening entertainment. Nonetheless, however far Riemann calculated, he knew that he could never write down the complete number or discover a repeating pattern.

      To capture the impossibility of expressing such numbers in any way other than as solutions to equations such as x2 = 2, mathematicians called them irrational numbers. The name reflected mathematicians’ sense of unease at their inability to write down precisely what these numbers were. Nevertheless, there was still a sense of the reality of these numbers since they could be seen as points marked on a ruler, or on what mathematicians call the number line. The square root of 2, for example, is a point somewhere between 1.4 and 1.5. If one could make a perfect Pythagorean right-angled triangle with the two short sides one unit long, then the location of this irrational number could be determined by laying the long side against the ruler and marking off the length.

      The negative numbers were discovered similarly out of attempts to solve simple equations such as x + 3 = 1. Hindu mathematicians proposed these new numbers in the seventh century AD. Negative numbers were created in response to the growing world of finance, as they were useful for describing debt. It took European mathematicians another millennium before they were happy to admit the existence of such ‘fictitious numbers’, as they were called. Negative numbers took their place on the number line stretching out to the left of zero.

Image

      The real numbers – every fraction, negative number or irrational number is represented by a point on the number line.

      Irrational numbers and negative numbers allow us to solve many different equations. Fermat’s equation x3 + y3 = z3 has interesting solutions if you don’t insist, as Fermat had, that x, y and z should be whole numbers. For example, we can choose x = 1 and y = 1, and put z equal to the cube root of 2 – and the equation is solved. But there were still other equations which couldn’t be solved in terms of any of the numbers on the number line.

      There seemed to be no number which was a solution to the equation x2 = −1. After all, if you square a number, positive or negative, the answer is always positive. So any number that satisfies this equation is not going to be an ordinary number. But if the Greeks could imagine a number like the square root of 2, without being able to write it down as a fraction, mathematicians began to see that they could make a similar imaginative leap and create a new number to solve the equation x2 = −1. Such a creative jump marks one of the conceptual challenges for anyone learning mathematics. This new number, the square root of minus one, was called an imaginary number and given the symbol i. In contrast, mathematicians began to refer to the numbers that could be found on the number line as real numbers.

      To create an answer to this equation, seemingly out of thin air, seems like cheating. Why not accept that the equation has no solution? That is one way forward, but mathematicians like to be more optimistic. Once we accept the idea that there is a new number that does solve this equation, the advantages of this creative step far outweigh any initial unease. Once named, its existence seems inevitable. It no longer feels like an artificially created number but a number that had been there all along, unobserved until we’d asked the right question. Eighteenth-century mathematicians had been loath to admit there could be any such numbers. Nineteenth-century mathematicians were brave enough to believe in new modes of thought which challenged the accepted ideas of what constituted the mathematical canon.

      Frankly, the square root of −1 is as abstract a concept as the square root of 2. Both are defined as solutions to equations. But would mathematicians have to start creating new numbers for every new equation that came along? What if we want solutions to an equation like x4 = −1? Are we going to have to use more and more letters in our attempts to name all these new solutions? It was with some relief that Gauss finally proved, in his doctoral thesis of 1799, that no new numbers were needed. Using this new number i, mathematicians could finally solve any equation they might come across. Every equation had a solution that consisted of some combination of ordinary real numbers (the fractions and irrational numbers) and this new number, i.

      The key to Gauss’s proof was to extend the picture we already had of ordinary numbers as lying on a number line: a line running east-west on which each point represents a number. These were the real numbers familiar to mathematicians since the Greeks. But there was no room on the line for this new imaginary number, the square root of −1. So Gauss wondered what would happen if you created a new direction. What if one unit north of the number line were used to represent i? All the new numbers that were needed to solve equations were combinations of i and ordinary