The Dinosaur Hunters: A True Story of Scientific Rivalry and the Discovery of the Prehistoric World. Deborah Cadbury. Читать онлайн. Newlib. NEWLIB.NET

Автор: Deborah Cadbury
Издательство: HarperCollins
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 0
isbn: 9780007388943
Скачать книгу
a scientific history of the earth would tally with scriptural records. He was impressive in debate and was soon influencing some of the more liberal churchmen of his day. John Bird Sumner, the Bishop of Chester and later Archbishop of Canterbury, wrote a Treatise on the Records of Creation in 1816, in which he supported Buckland and other members of the Geological Society in viewing the six ‘days’ as six creative ‘eras’.

      Buckland’s keenness to reconcile the new science with religion won him support in high places. As his reputation grew, he made the acquaintance of leading gentlemen of the day, including Lord Grenville, the Chancellor of Oxford University; Sir Joseph Banks, the famous botanist; and Sir Everard Home at the Royal Society, as well as leading politicians such as Robert Peel. Using these powerful contacts, Buckland lobbied for the first chair of geology to be created at Oxford. He reassured Lord Grenville that the sciences would, of course, be subordinate to the classics. ‘I would not surrender a single particle of our system of classical study,’ he promised. The matter was referred to the highest level of government, eventually reaching His Royal Highness, the Prince Regent.

      In 1818, with the approval of His Royal Highness, the stipend for a Professor of Geology at Oxford was allotted from the Treasury. ‘I feel quite proud of the high consideration which is given to the noble subterranean science by such exalted personages,’ Buckland told Lady Mary Cole at Penrice Castle. However, such approval from leading members of society added to the pressure on Buckland to satisfy the urgent need to find geological evidence that would corroborate the Scriptures, such as a biblical Flood. The religious tradition was so entrenched at Oxford that if geologists could not discover such evidence quickly, the infant science would lack credibility.

      When Buckland became Reader in Geology he also became Director of the Ashmolean Museum. Directly under his supervision in this museum, on display in the heart of Oxford for well over a century, were the bones of an unknown giant animal. As early as 1677 the first Keeper of the Ashmolean Museum, a Dr Robert Plot, had described them. While writing a Natural History of Oxfordshire, Dr Plot had come across an inexplicably large portion of thigh bone from a local quarry, weighing more than twenty pounds. He had suspected it was the bone of an elephant brought to England during the Roman invasion of Britain. When later he had an opportunity to study the skeleton of an elephant, he was puzzled to find that the huge Oxford fossil was totally different. There seemed only one conclusion to be drawn. He wrote, the fossil ‘has exactly the figure of the lower most part of the Thigh-bone of a Man’.

      During the eighteenth century, more giant bones had been discovered in quarries around Oxford. Joshua Platt, a ‘Curiosity-Monger’, found three large vertebrae buried at Stonesfield, near Woodstock. Later, the same dealer reported part of a giant thigh bone almost thirty inches long which he valued at four shillings, and a fragment of scapula, or shoulder bone. Early in the next century Professor Kidd, Buckland’s predecessor as Reader of Mineralogy, had studied the bones and concluded they were derived from some strange mammal. William Buckland did not record any conclusions about the unknown creature in 1818 when he became the Keeper of the museum, although it is likely that people looked to him for an opinion. Impossible to classify and the subject of the wildest speculation, the bones were at once familiar and accepted as everyday objects and at the same time represented a past of incomprehensible strangeness.

      However, later that year there was an opportunity for Buckland to extend his unique brand of English hospitality to a very distinguished French visitor: Georges Cuvier. Cuvier was updating his extensive survey of fossils, Recherches sur les Ossemens Fossiles, and hoped to see the latest discoveries of giant bones in Oxford. By now, he had almost legendary status throughout Europe. Approaching his fifties, his thick red hair long since dulled, the ‘Napoleon of Intelligence’ made a powerful impression and the self-confidence amassed from a lifetime of invariably being ‘right’ was palpable. It was said of Cuvier that his library – containing some nineteen thousand volumes – was so familiar to him that he could remember everything and retrieve any volume or monograph he required in seconds. He had been showered with awards, named Councillor of State in 1813, and was later granted the honorary title of Baron.

      Cuvier visited the Ashmolean and was presented with a variety of giant bones: teeth, vertebrae, ribs, part of an enormous thigh bone and confusing fragments of other bones. No two bones, except for some of the vertebrae, had been found connected together. It was impossible to tell from the detached bones whether they originated from different animals of various ages and sizes or belonged to the same creature. Although there are no records of the conversation that took place between Cuvier and Buckland in 1818, subsequent letters between the two reveal that in no time Cuvier had solved the puzzle.

      The first clue available to him came from the rocks themselves. The bones from Stonesfield were found in rock at a considerable depth below the surface. The stone was being mined to provide roofs for new buildings, and could only be obtained by going deep underground. ‘They descend by vertical shafts through a solid rock … more than 40 feet thick, to the slaty stratum containing these remains,’ wrote William Buckland. The giant bones ‘are not lodged in fissures and cavities but are absolutely imbedded in a deeply situated stratum … which extends across England from near Stamford in Lincolnshire to Hinton near Bath’.

      Buckland had studied these rocks and confirmed the earlier work of the surveyor William Smith that the Stonesfield slate lay immediately above a stratum known in the geological sequence as ‘the oolitic limestone’ of Bath. The oolitic limestone was correctly seen as ancient, formed at the same time as the ‘Jura [Jurassic] limestone’ strata found on the Continent, well below the chalk in the Secondary series. No mammals had been found this far back in the geological sequence; Cuvier’s large mammals were found in the more recent, Tertiary formations. So although the thigh bone had mammalian characteristics, with a thickset, straight vertical shaft, Cuvier examined the bones confident that they were far more likely to be from a reptile than a mammal.

      Unlike Gideon Mantell’s discoveries in Sussex, the huge teeth displayed at the Ashmolean were still attached to the jaw, and this too provided several important clues. Although the holes for the teeth varied in size along the length of the jaw, they were all the same shape, typical of a reptile. Tiny pointed teeth were poking through the jaw beside the adult teeth which, since reptiles have replacement teeth growing through the jaw all their lives, also indicated that the jaw belonged to a reptile. ‘The exuberant provision in this creature,’ Buckland wrote, ‘for a rapid succession of young teeth to supply the place of those which might be shed or broken is very remarkable.’ Convinced the bones belonged to a reptile, both from the age of the rocks and the characteristics of the jaw, Cuvier could pronounce with some certainty that it had other reptilian characteristics: it had been oviparous, or egg-laying and had a dry, scaly skin.

      But it was much harder to define what kind of reptile or lizard it might have been. Cuvier could see that, within the reptile class, it was not like a turtle, because there was no shell and it lacked the distinctive shape of skull and form of vertebrae. The largest reptile known at this time was a crocodile. These bones shared some features in common with crocodiles: the double-headed ribs, the vertebrae with flat articulating surfaces; and the giant thigh bone had a fourth trochanter, an extra surface for muscle attachment. Mammals have only three surfaces for muscle attachment at the top of the thigh bone; crocodiles, like the unknown creature, have four, denoting a tremendous muscle structure. However, there the similarity ended.

      Unlike the conical ridged teeth of the crocodile, these teeth were compressed, with a long serrated edge along the whole extent of the enamel, like a steak knife. The exterior surface of the jaw had distinct cavities for the passage of blood vessels and nerves, allowing the creature a very good blood supply to support the activity of the jaw. And whereas a crocodile jaw is long, thin and pointed, this fragment of lower jaw was short, high and narrow, flattened from side to side. From the absence of curvature on any piece of the lower jawbone, nearly a foot in length, it seemed likely that this creature’s jaw terminated in a flat, straight, and very narrow snout. Cuvier concluded that of all living animals, these bones were most similar to a carnivorous lizard known as the monitor lizard. However, there was one crucial difference: size. Comparing the thigh bone, which was ten inches in circumference, to the equivalent bone in a lizard, he simply scaled up. ‘From these dimensions,’ wrote Buckland,