Например, первое значение х1 сглаженного динамического ряда рассчитывается по формуле:
Второе значение х2 сглаженного динамического ряда рассчитывается по формуле:
где к — период сглаживания.
Таким образом, полученные средние величины х1, х2 … образуют сглаженный ряд динамики.
Сглаживание можно производить и для четного периода, например для четырех лет. Вспомогательный ряд скользящих средних рассчитывается так же, как и при нечетном периоде, а основной рассчитывается постепенно на основе двух соседних средних вспомогательного ряда по формуле простой средней.
Аналитическое выравнивание – это более сложный прием выявления основных тенденций динамического ряда. Данный процесс включает два этапа:
1) выбор вида кривой (функции), форма которой соответствует характеру изменения динамического ряда;
2) определение параметров и выравненных значений уровней динамического ряда.
На первом этапе на линейном графике по фактическим данным строят ломаную кривую. При этом по оси абсцисс откладывают время, а по оси ординат – значения динамического ряда. Затем глазомерно оценивают ее и выбирают наиболее подходящую кривую. Это может быть прямая или парабола, показательная функция и т. д. Во всех случаях выбранная кривая должна удовлетворять методу наименьших квадратов. Его суть:
где у – фактические уровни динамического ряда;
yt – выровненные или теоретические уровни для каждого периода t.
На втором этапе аналитического выравнивания параметры функции, например прямой yt = a0 + a1t, определяются с помощью системы нормальных уравнений, например:
Определив а0 и а1, подставляют их значения в уравнение прямой, где t – время.
Параметр а0 интерпретируется как вычисленный теоретический уровень срединного члена ряда. Параметр а1 трактуется как средняя скорость изменения уровня ряда (средний абсолютный прирост).
21. Выборочное наблюдение. Ошибки выборки
Одной из задач статистического исследования зачастую является задача исследования группы однородных объектов, явлений или процессов относительно некоторого качественного или количественного признака, характеризующего эти объекты.
При решении данной задачи можно провести сплошное обследование, т. е. обследовать каждый из объектов данной совокупности относительно изучаемого признака.
Выборочное наблюдение – это такой тип несплошного наблюдения, при котором обследованию подвергаются не все единицы изучаемой совокупности, а лишь отобранные в определенном порядке.
Применение выборочного наблюдения способствует:
1) экономии времени и средств в результате сокращения объема работ;
2) минимизации порчи или уничтожения исследуемых объектов;
3) возможности