Сорок лет Чебышёв сотрудничал с военным артиллерийским ведомством, для которого выполнил ряд блестящих работ по усовершенствованию дальнобойности и точности артиллерийской стрельбы.
В исследовании «О черчении географических карт» (1856) Чебышёв поставил базовую задачу картографии (и начал решать ее) – найти картографическую проекцию любой страны, сохраняющую подобие в ее отдельных частях, с минимальным искажением масштаба. (Для Европейской России погрешность задавалась менее 2 % при реально достижимой тогда более 5 %.) Эта задача была решена позднее учеником Чебышёва профессором Д.А. Граве.
Всех исследований, статей и сообщений Чебышёва, в которых он самыми элементарными (с точки зрения царицы наук) средствами получил великолепные научные результаты, не перечислишь, так как, по подсчетам библиографов, этот список занимает несколько журнальных страниц. Одних только названий классических математических соотношений, связанных с именем математика, не один десяток: многочлены Чебышёва, неравенства, множество, система функций, фильтр, механизм, функции Ψ и Θ, сеть, формула, полиномы и т. д.
Нельзя не упомянуть и о предложении Чебышёва Петербургской АН – избрать членом-корреспондентом С.В. Ковалевскую, а также о его учениках – А.М. Ляпунове, А.А. Маркове, В.А. Стеклове, Д.А. Граве, Г.Ф. Вороном, А.Н. Коркине, Е.И. Золотареве. Будущие академики и главы других математических школ завершили проработки и идеи учителя – по теории фигур равновесия вращающейся жидкости, по теории цепей и т. д.
Пафнутий Львович любые теоретические проблемы математики старался увязать с практической деятельностью людей. Не раз подчеркивая, что в любом деле надо по возможности добиваться как можно большей выгоды, Чебышёв свои математические открытия совершил при решении прикладных задач. Более того, теории механизмов и машин ученый отдал едва ли не треть своей жизни. Глубокие теоретические изыскания в этой области математик успешно сочетал с конструированием конкретных механизмов. Ряд теоретических работ Чебышёва: «Об одном механизме», «О зубчатых колесах», «О центробежном уравнителе», «О кройке платьев» и т. п. – были воплощены в конкретные машины и устройства. Помимо этих сугубо практических вопросов Чебышёв вывел несколько сложнейших соотношений: структурную формулу плоских механизмов – т. н. формулу Грюблера (немецкий ученый, «открывший» ее на 14 лет позднее Чебышёва), теорему о существовании трехшарнирных четырехзвенников, описывающих одну и ту же шатунную кривую, нашедшую широкое применение на практике, и т. д.
Многочисленные работы Чебышёв посвятил синтезу шарнирных механизмов, в частности параллелограмму Уатта, изучение которого натолкнуло математика на постановку задачи о наилучшем приближении функций. Решив эту задачу, Чебышёв создал механизмы, в