Readers wishing to know more about the philosophy of Thagard are referred to BOOK VIII below.
4.06 Contemporary Pragmatist Aim
The successful outcome of basic-science research is explanations made by developing theories that satisfy empirical tests, and that are thereby made scientific laws that function in scientific explanations.
The principles of contemporary pragmatism including its philosophy of language evolved through the twentieth century beginning with the autobiographical writings of Werner Heisenberg, one of the central participants in the historic development of quantum theory. This philosophy is summarized in Section 2.03 above in three central theses: relativized semantics, empirical underdetermination and ontological relativity, which are not repeated here. Readers wishing to know more about the philosophy of Heisenberg are referred to BOOK IV below.
The institutionally regulated activities of research scientists may be described succinctly in the pragmatist statement of the aim of science. The contemporary research scientist seeking success in his research may consciously employ the aim as what some social scientists call a “rationality postulate”. The institutionalized aim of science can be re-expressed as such a pragmatist rationality postulate:
The institutionalized aim of science is to construct explanations by developing theories that satisfy empirical tests, and thereby make scientific laws that function in scientific explanations.
Pragmatically, however, rationality is not some incorrigible principle or intuitive preconception. The contemporary pragmatist statement of the aim of science is a postulate in the sense of an empirical hypothesis about what has been responsible for the historical advancement of basic research science. Therefore it is destined to be revised at some unforeseeable future time, when due to some future developmental episode in basic science, research practices are revised in some fundamental way. Then some conventional practices deemed rational today might be dismissed as misconceptions, and perhaps superstitions, as are the romantic and positivist beliefs today. The aim of science is more elaborately explained in terms of the other three functional topics as sequential steps in the development of explanations.
The institutionalized aim can also be expressed so as not to impute motives to the successful scientist, whose personal psychological motives may be quite idiosyncratic. Thus the contemporary pragmatist statement of the aim of science may instead be phrased in terms of a successful outcome instead of a conscious aim imputed to scientists. The successful outcome of basic-science research is an explanation produced by developing theories that satisfy critically empirical tests, and that are thereby made scientific laws that function in scientific explanations.
The empirical criterion is the only criterion acknowledged by the contemporary pragmatist, because it is the only criterion that accounts for the advancement of science. Historically there have been other criteria, but whenever there has been a conflict, eventually it is demonstrably superior empirical adequacy that has enabled a new theory to prevail. This is true even if the theory’s ascendancy has taken many years or decades, or even if it has had to be rediscovered, such as the heliocentric theory of the ancient Greek astronomer Aristarchus of Samos.
4.07 Institutional Change
Change within the institution of science is change made under the regulation of the institutionalized aim of science.
Institutional change is the historical evolution of scientific practices involving revision of the aim of science, which may entail revision of its criteria for criticism, its discovery practices, or its concept of explanation.
Institutional change in science must be distinguished from change within the institutional constraint. Philosophy of science examines both changes within the institution of science and historical changes of the institution itself. But change of the institution is typically recognized only retrospectively due to the distinctively historical uniqueness of each episode and also due to the need for eventual conventionality for new basic-research practices to become institutionalized.
In the history of science institutionally deviate practices, innovative instruments and unconventional concepts that yielded successful results are initially recognized and accepted by only a few scientists. As Feyerabend emphasized in his Against Method, in the history of science successful scientists have often broken the prevailing methodological rules. But the successful departures eventually become conventionalized. By the time they are deemed acceptable to the peer-reviewed literature, reference manuals, encyclopedias and student textbooks, the institutional change is complete and has become the conventional wisdom.
Successful researchers have often failed to understand the reasons for their unconventional successes, and have advanced or accepted erroneous methodological ideas and philosophies of science to explain their successes. One of the most historically notorious such misunderstandings is Isaac Newton’s “hypotheses non fingo”, his denial that his law of gravitation is a hypothesis. Nearly three centuries later Einstein demonstrated otherwise.
4.08 Philosophy’s Cultural Lag
Adequate understanding of successful departures from institutionalized basic research is elusive even for philosophers. There exists a time lag between the evolution of the institution of science and developments in philosophy of science, since the latter depend on the realization of the former. For example more than a quarter of a century passed between Heisenberg’s philosophical reflections on the language of his indeterminacy relations in quantum theory and the consequent emergence and ascendancy of the contemporary pragmatist philosophy of science in academic philosophy.
4.09 Cultural Lags among Sciences
Not only are there cultural lags between the institutionalized practices of science and philosophy of science, there are also cultural lags among the several sciences. Philosophers of science have preferred to examine physics and astronomy, because historically these have been the most advanced sciences since the historic Scientific Revolution benchmarked with Copernicus and Newton.
Institutional changes occur with lengthy time lags due to such impediments as intellectual mediocrity, technical incompetence, risk aversion, or vested interests in the conventional ideas and the received wisdom. The newer social and behavioral sciences have remained institutionally retarded. Naïve sociologists and economists are blithely complacent in their amateurish philosophizing about basic social-science research, often adopting prescriptions and proscriptions that contemporary philosophers of science recognize as anachronistic and fallacious. The result has been the emergence and survival of retarding philosophical superstitions in these retarded sciences, especially to the extent that they have looked to their own less successful histories to formulate their ersatz philosophies of science.
Thus sociologists and economists continue to enforce a romantic philosophy of science, because they believe that sociocultural sciences must have fundamentally different philosophies of science than the natural sciences. Similarly behaviorist psychologists continue to impose the anachronistic positivist philosophy of science. On the contemporary pragmatist philosophy these sciences are institutionally retarded, because they erroneously impose preconceived semantical and ontological commitments as criteria for scientific criticism. Pragmatists can agree with Popper, who said that science is “subjectless” meaning that science is not defined by any particular semantics or ontology.
Pragmatists tolerate any semantics or ontology that romantics or positivists may include in scientific explanations, theories and laws, but pragmatists recognize only the empirical criterion for criticism.
4.10