Как эффективно выявлять причины вреда и прогнозировать риски. Инверсионный метод анализа и прогноза вредных явлений. Светлана Вишнепольская. Читать онлайн. Newlib. NEWLIB.NET

Автор: Светлана Вишнепольская
Издательство: Книготорговая компания «Галактика»
Серия:
Жанр произведения: Прочая образовательная литература
Год издания: 2018
isbn: 978-5-9500662-7-6
Скачать книгу
href="https://www.litres.ru/svetlana-vishnepolsk/kak-effektivno-vyyavlyat-prichiny-vreda-i-prognozirov/?lfrom=203296966">купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACcAXcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAoopMigBaKztQ1iw0qEyX15FAoGSGbB/AdTXF6r8UrGGBjpsDzvg4eYbFBHfHXHvQNJs9Ez71k6r4j0nRoy19fwxkfwbsv/AN8jmvJjq3jXxWpjtkupYD/zxjEUZ9izEZ69M+nFW9O+FutXknm6ndQWSHqsf72Qj07KKQ7LqdFd/FnSowwtbG8uCOhIEan8c5/Ssaf4vX28fZ9JgVQcsJZiSR7YroIfhp4Ysrd3vftFwigsZLi4KhQPXbtA/KvPfFmpaG832TQNPs4bSIfvLpIhulYejEZwOee/06g1Y9T8J+NLTxRC6KptryIDzIGOeD/Ep7j+Xeurry34Y+Fru0mfXLtHhWWLZBEeCVJBLEY4+6uB9T6V6lQiXuFFFFMQUUUUAFFFIcYoAWiql1fWtlGZLq5hgTpulcIP1rmNV8faZYOi24e8JchjEcKoHUgnhvTigdmzsqaWAHX868q1T4k3k8ohsY44FJ4O0vI307fpVBYPF+tsUe2v5EkHyvMfLQA5z1IHOM++BQPl7npN74q0axZ0kvVaReqRfOR+VYt58RbCFVFvBJKzevyhaxbP4aX8zA397FFGBwsKlm/XA/nW5a/DbRIHDz/aLo+ksmF/IY/rSDQxrj4lyurLBbqj7tqj73U8c+uMdqxpNU8U61MTCuoSxdNsSbF4zwSMf5FeqWmh6Xp+Ba2EEeO6oM/ma0FVR0GKeoXXQ8dTwp4tu4ghtisXOEnnGBn1HNXrP4bauyhbq9toVyCVjUt/QCvVqKA5mebw/C4swN1rErAkbljiA4x6kn+VaEPwy0WNMSzXsx/66gfyAruOKOKLBzM5VPh74bTg2LPxj553OR+fvUq+A/DCtuGkxZySMsx/rXS0tFhXZzo8D+Gtu06NbH6g1sWdjbWECwWsEcMK9EjUKP8A9dWaWgLhRRRQIKKKKACiiigAooooAKKKKACiiigAoopN1AC0hYL1Nc94j8VWXh2BTLulmc/LChG49eT6DjrXndx4p8TeLZ2s9LtmSLJ3LCMYX0ZzwOPTn0pFKJ6JrfizS9CUpNcK04HEKEFvbjsK8+1P4h61q04ttIjeDcMeXDGJJeSMHPOPTpjnrWnonwvkeb7Rr1wJBu3fZ4HPzf7zcH8sV6Bp+k2Gkw+TY2sUCHkhEAJPqfU8UBojyzTfh5rmt3BvdZuWtBJ8zF/nmJ54x0Xr0/Su40zwB4d05VLadHdTDrLdDzMn2ByB+AFdUMCgnAzTE2xu0DgDArN1jWrLQrF7u+mCRrwF6sx7BR1JrA8VeOrbQY2tbUrc6iRjy8/LF6Fj/TqfavM7TT9f8b6q82WuHziS5k4jh9h/gOfU0hpdyx4i8W6r4tuhZQRzJayHEdlEMtJjnL46+uM4Hfpmux8J/DeOxZL/AFoJNdggx24OY4iOQT/eP6Dt610Hhjwdp/hqAGNRPeMMSXLqNx9QP7q+wrp6LA32EwB0paSjoKZIDrS1SvtSstNgae8uEhjXu7f0rkL/AOJulwxt9iiluZAMBiu1c/WgdmzumOBVS61GzswftN3FFj++wFeRal8QNZ1USW0BW3UkH/R878emfrVJ9J1K4SO71TUYLZHxiSdzI5HsBk9exNA+Xuegal8RNNtFZbWN7mQD+HAUEjI579R0rj5fGviLVbry7W4cM/SCzh3bePoW6e9WrPSfBlk4e/v5dSlznbghfyX+prVXx7oukgwWmmrFGOAYlCj2znFA7dkYtr4K8Sa1P596RBnky3Tl3P8AwHqK6bTvhpp0ADahdXN63JK58uPr0wOT+JrOm+KcQT/RoEcljhS3KjtnGaq/8J34jmAePS5vLIKqVhY7j2PTp0paB7x6JYaLpmmD/QLC3tz3aOMBj9T1NaHFeUSa546uY3EWm3Y3dSIduPocjFVza/EK53KY7qNXP8UqLj9SaNBcp6/vXHLUnmR9QwwK8Sv4fEenzAX2pQo4U4Q3SsSo56AY/wD11hnU9SB2C/m25ztD8ZwKLj5T6HNxD081M/71VrrVdPso/Mub63hTpuklC/zr5w/eSTBYt7zE5Cx5Z8nntzWvaeBPEd86tFpMiBhnfOQg/U5/Si4cp7Dc+O/DFqMyazatu6eU/mY+u0HFXdF8SaT4gR20y9SfyzhlAKsPqpANeQn4Y+KV6W1q3sLgf4VreDvBniPRvF1nd3NusdugbzpI5w2VKkY9/mANF2FkewUUdqWmQFFFJQAtFFFACUUtFABRRRQAUUUUAFFFFABRRRQAUVWuruCzgaa4kWOJAWZmOMAV5zr/AMSd+600SGRpXLR+cwyd2cDYozk9cfhQNK52mu+I9P8AD8CyXjtuk/1cadW+n59a811Txtr3iW5+waRbvGrvhUgyZCOg3MOFB654x61Y0jwDq2tTJea9cywW55MbMTM4IB57KM9R14PSvStJ0XT9Es/s2n2qW8ZbcQuSWPqSeSfc0itEcHpHwweZ/tGvXhldm3NBAxwT33OeW7dMfjXollYWun2ywWdvHBCowEjUKB+VWqP4adiW7i9qSlrN1TVrLR7M3V9OIo84HqxPQAdSfYUCLkssdvE0srqkaDLMxwAPUmvLPFnxHa486y0WTZb42teg4Y+uz27Z9+PWsbxH4s1LxVdpZWsEi2zPiK0j5aX0LdvU46DGc8ZrqfCXw7js3i1HXFElyGDR23BSM9if7xH5D3xSLSS3Oe8LeBLzXZEvtUEtvYMdwDEiW49TnqAfU8nJx2Nev2Nha6bZx2lnCkUEYwqKOKsAcU6hEt3FoopGpiPM9Z+KMuk6vfafHo4kNtKY/Me4K5I77dpwOeOeRiuU1H4meIrsHFzBYxsMBYI/m656nJz78fQV6rq3grw/rl4bvUNOWW4IAMiyvGSB0ztYZ/GrGk+FtD0MhtO0y3hkHSTaXfHpubLfrSKujweCz1fVP3sVlqF3uOTIIncEn3xity08CeJZtr/2YI1bvcTKo/IEn9K92wPSjFFh8x5Va/DnxCUVJ9TsreIHO2NGfn6YXNaNr8L4QWkvdVmlY8AQIsagfqa9EpCeOelMm7OSi+Hfh2NgTayvz/y0uH568fex3/StC28I+H7VSI9JtjkAMZE3Fse5zU+p+ItM0lSbq7jWTOBGpBYn6VxOsfE5llK6VbgRDgyzjr/ugH+dIerPQIbCwtk2Q2kEadcLEB/L61kar4u0XSGMVxOzyAA7I4y2R9cY9a80m1HxR4vZvs8FzcI3yssG5Ie4xydv17mtbTfhbqEwVtQvobReCYoF8xvxPAB+maAsuoup/E28kL/2fbpbxLwHm+ZvrgHAx6Vgf2l4k8UMWt1vLtWbb+5UiIH0ycKPXr3+lem6T4B0HS3Ev2c3U3/PS6YOR9BgKD9AK6cKFUKABgYAHQUD5ktjyOx+GetX0gkv7iCzjYcgMZZPx7D8zXV6d8NNCtMm5SW+kz1nb5f++RgV2mOOlFFhOTKVlpen6anl2dnDAvoiAVdwKKKZIUYFFLQAg60tFFABRRSUALQelFFACDpRS0UAFFFFABRRRQAUUVSv9QttNtJLm6kCRopJyfT0oAuE4HNcd4o8dWujRrHZhLm5bI+VhhPc1xniDx9favItppiyQxy/KI0UtLIT0HH8gPXnvWp4V+G75jvfECocHctoDuH/AAM9D9Bx9aRVrbmKIfEXxBuSyjZZI2N8mRGoOOg/iOOfT6V6J4d8F6X4d2yon2i8xhriUAt77f7o9hXQQQx28KxRIqRoAFVVwAPQCp6AcgpKWimSFFHauK8WeNrfRg1nZMk2otwccrD7t7+i9aBpXNPxN4mtfDtn5koaW4fiKBTy31P8I9/515JLLrvjfWwq5mmGTtyRFbqcdT+H1PP4WNE0LVfG2qSzyTOIc/v72QZ59FGev04H6V7Bouh2Og2C2ljFsQcsx5Z29Se5pFaRMrwv4NsvDcPmAeffSDEs7D9FHYew/HNdTR/DRTJbCjbRVe6uoLO3M9zNHDEoyzyOFUfUmgRY4pa43UfiT4fscrFLJfSDqtsoI/76JAP4E1xWpfFXWJnUWFtbWqg5O8mVm9B2AoHys9mpa5zwf4iXxLogvCgjnRzFNGDwrDB4PoQQav6pren6PC0l7cxxELuVSwDN7AdzQFjTPSoJ7mG3QtNNHGAMlncLXneqfE9Ps5Gl2jCVsYe4PGCPQHkg8Vy0GneIPFmoPeQ2sjiY5a4fKxAH0J6gegzSGo9zv9Y+IWmWSMllm6nV9hXJC47nNcTeeN9d1dmtYiWDZBitoiWYeh610+kfC+2jAl1i7e6kP/LGLMaD6kcn8x9K7XTtKsNKh8mxtIoI+4jXGfqe/wCNAXSPLdO+Hmu6mftF9MlnvGSZT5krdOSOnr1P4V2elfD7Q9MdZXia8mH8Vz8y/Xb0/HtXXUUA2yNVVAEVQoAwAAOB/hUmOaKWmSFJS0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU1iACT2rzLxb8RljMljo0nKnEl0CCOOoX/GkNK50/iTxjY6AhRmE1zjPlIwyvuRmvLkGv+PtVynz+WMNKciKFSehx1PPQDP0HNXPCngW78QFdQ1JpYNPJ3DOfNnyck5PIU+vU9vWvYLHTrXTbOO1s4FhgjGFRBjH/wBf3oKukY/hrwfp3hyEGBPPvGXEtzKAWb2H91fYfjk810tFFMgKKKKACk3UHha8m8bePDLNLpukzlYE3LcXCnBY/wB1W9OuT+VIaVy/4y8ffZmfTdGlXzVys10pBEfOCqerep6D69MHwt4IuPEUi3+omSHT3bf3ElxnnOTyFP8Ae6nt61Y8GeBhcrHq+tRhLJRvgt243j+8wPRfQfia6HW/iPpumiS100C8uFG0FDiJDj17/QZ/CgryR2ttbW2m2aQW0SQ28SgKi4CqK5XV/iXoGlTiFZJb6TowtArBPqSQM+wJPtXlOteJdU12Rje3TmI8CBCVjA9x3/HNYvlMzDbgDt2AouHKfSWlaraazp8V9ZSB4JPunGCCOCCD0IPGKoap4v0bSpXinvFaVOscZ3MPqB06jrXjmkX+rW0b6bpEt0wlYu0cIyxJAGeBkDA9cV0mmfDbWNQkEuqTrZxscsM+ZK3r7A+/NAcqW5JrPxKup9yaZH9ljYcO6gyA8e7Lg8j1GPwrnEg8R+KtoiivL5XYN5j/AOryOM7jgcc8ZJ64FeqaV4B8P6Xtk+xi7nH/AC1uvnOfUA/KPwArqVVVUKAAB0AoFzJbHzXf2hsLp7SSeOSaJisnlZKhgeQCcZI78dfWnafYWsz+fqF2LezQ4bYN0shwSFQDOM4xubAGe9dN4q+H+swazcXGm2bXVpNIWRYmG5MnJBHHGSeRUWmfDfxHfSAXMMdhFnl5mDHHsq/1xSLuiyfHY0uzNj4esIdPsgMhpfmkY45ZucZPHJJPFV9M8Pa74wuGvQ22Bmwbq5JOfZQOWx7YHvmvQtD+Hui6OVmljN7cjH725UMAR3Vfuj64z712AAA4pk81tjj9D+Hui6X5cs6G+uk5ElwMhT6qmAB7ZyfeuuUBQAAABx6U6jHNMm9woxS0UCEopaKACiiigAooooAKKKKACiiigAooooAKKKKACiikoAWiiigAooooAKa7BFJJAA9aXtmvJfiR4081pNC0+QCNTi7mDcn/AGBj/wAe/L1oGlcr+NfiC95JNp+kvtsxuSW44Pm54IX29+/b1NzwX8PGk8vVNdgwMbobJh09GcfyXt356O+H3gZkeLWtVhIYANa27r93/bYevoO3Xr09UHC0ht20QgGxQAOBTqKSmSLRRSfxUALRRUUkscSlpHVVHUk4oA5rx9dXNp4PvpbTd5hUIzL1VSwDEfTJ57V4hp17DZ3S3Etmt00XMUUhxHu7FgOWA444z6jFem+JvibYxJPZ6ZapfOcxu8w/c+/uw69OPevP9PvvDgd5tR0OeSZTlILe6K27fXJ3AdOMn+lItbF6bU/EnjRmQu0lrH/rNv7q2ixySx6cdcEk+grNvLex0xhFFcLfXSkb2CYgjx1C85c57kY9s9JtV17UfEEkFlFAI7dSRbafZIQvr90csenXgdgOa7Twx8MN4S88RBixxtskf5R/vsOv0H60DvY4PS9I1PXrjZp9lLNzhnC4Rfqx4r0TRfhWibZNYuWkz1t4CVXv1Y/Me3TH416Nb20NpCsNvEkcKDCIihVUegAqeixLkzP07SbDSbYW9jaxQRjsigE/X1NaNJRTJFpP4qOaWgApKWigBKWkWloAKKKKACk9vSlooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOY8cane6R4WvLuwhd51UKHUf6sE4LkegH+cZrzf4b+GBrOo/2rdLvs7V/kVhkSydefXbkH3/Cva3jWVSjqGUjBBHBpkVvDbRbIYkjQdFRcD8hSsVfQlwAuBS0tFMkKT+KlpKAFpGqCa4itoHmmkWONFLMzHAUDqSewrzPxN8TT+8tdBwy/dN44PH+6pHP+8ePY9aLjSudj4i8Xab4bjAnZpbhhlYIuW+p9Bx1NeR+KPGN94jby5dsNopBW3Q5GeOSe5B/CsCe7luJWmmleWV/vO7ZZu3JpLa1uL2dILaGSaZ/upGu5mx7UrlpWISSzcenSuh8NeD9R8SShrdPKtM4e4cfKPoO5/T3rsfDHwwEZS617kg5W0Uhl/4E3c+w4+temwwx28SxQoscaDCqowAKBORieHfCemeHIALWHdcMMPcOAZH6d+w46DiugWilpk3EpaKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJnjNAC1la1rVloVi95eyhI14AAyznsFHc1j+JvHFjoKNbxsJ749I1OQvu3p9K4NfEsSsdXvJP7R1ckmBJoyILUE4+Ve54Bzx9eclFKJR8Y69quqzqupo1lDt3wWWCC6ljh3Hrxxn04HU1yDTE8epwBXURadr3j7UpLoESlQFe5kGyNACcAYHbJ6Z9zXpPhj4eaboDLcXGL69HIkkUYQ/7K/160FXsedeG/h9quu7Z5k+x2ZP+slX5mH+yv9TXrmheF9K8O2/lWEG2Qj55n5d/qf6Dj2rdAxRRYhu4UtFJTELRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhOBXmXjP4iJAX03RJhJMPlmulwVT1C9iffoPc9PTD0xXmh+Edn/bHmrqEg00sX+y7Pm5Odu8EcfhnHGe9JlKx5tp+n6hq920VjazXc33n28/izE4H4mvS9A+GEcLrca5OLg4BW3jJCA8ZDHqefoPau80/TLPTLRbWytooIV6JGoH4+596v0WByIILeG2hWGCJI41GAiAAD8KmpaKZIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRSfxUtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9k=/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHaAWQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDA