I assume first that predication implies a single subject and a single attribute, and secondly that predicates which are not substantial are not predicated of one another. We assume this because such predicates are all coincidents, and though some are essential coincidents, others of a different type, yet we maintain that all of them alike are predicated of some substratum and that a coincident is never a substratum-since we do not class as a coincident anything which does not owe its designation to its being something other than itself, but always hold that any coincident is predicated of some substratum other than itself, and that another group of coincidents may have a different substratum. Subject to these assumptions then, neither the ascending nor the descending series of predication in which a single attribute is predicated of a single subject is infinite. For the subjects of which coincidents are predicated are as many as the constitutive elements of each individual substance, and these we have seen are not infinite in number, while in the ascending series are contained those constitutive elements with their coincidents-both of which are finite. We conclude that there is a given subject (D) of which some attribute (C) is primarily predicable; that there must be an attribute (B) primarily predicable of the first attribute, and that the series must end with a term (A) not predicable of any term prior to the last subject of which it was predicated (B), and of which no term prior to it is predicable.
The argument we have given is one of the so-called proofs; an alternative proof follows. Predicates so related to their subjects that there are other predicates prior to them predicable of those subjects are demonstrable; but of demonstrable propositions one cannot have something better than knowledge, nor can one know them without demonstration. Secondly, if a consequent is only known through an antecedent (viz. premisses prior to it) and we neither know this antecedent nor have something better than knowledge of it, then we shall not have scientific knowledge of the consequent. Therefore, if it is possible through demonstration to know anything without qualification and not merely as dependent on the acceptance of certain premisses-i.e. hypothetically-the series of intermediate predications must terminate. If it does not terminate, and beyond any predicate taken as higher than another there remains another still higher, then every predicate is demonstrable. Consequently, since these demonstrable predicates are infinite in number and therefore cannot be traversed, we shall not know them by demonstration. If, therefore, we have not something better than knowledge of them, we cannot through demonstration have unqualified but only hypothetical science of anything.
As dialectical proofs of our contention these may carry conviction, but an analytic process will show more briefly that neither the ascent nor the descent of predication can be infinite in the demonstrative sciences which are the object of our investigation. Demonstration proves the inherence of essential attributes in things. Now attributes may be essential for two reasons: either because they are elements in the essential nature of their subjects, or because their subjects are elements in their essential nature. An example of the latter is odd as an attribute of number-though it is number’s attribute, yet number itself is an element in the definition of odd; of the former, multiplicity or the indivisible, which are elements in the definition of number. In neither kind of attribution can the terms be infinite. They are not infinite where each is related to the term below it as odd is to number, for this would mean the inherence in odd of another attribute of odd in whose nature odd was an essential element: but then number will be an ultimate subject of the whole infinite chain of attributes, and be an element in the definition of each of them. Hence, since an infinity of attributes such as contain their subject in their definition cannot inhere in a single thing, the ascending series is equally finite. Note, moreover, that all such attributes must so inhere in the ultimate subject-e.g. its attributes in number and number in them-as to be commensurate with the subject and not of wider extent. Attributes which are essential elements in the nature of their subjects are equally finite: otherwise definition would be impossible. Hence, if all the attributes predicated are essential and these cannot be infinite, the ascending series will terminate, and consequently the descending series too.
If this is so, it follows that the intermediates between any two terms are also always limited in number. An immediately obvious consequence of this is that demonstrations necessarily involve basic truths, and that the contention of some-referred to at the outset-that all truths are demonstrable is mistaken. For if there are basic truths, (a) not all truths are demonstrable, and (b) an infinite regress is impossible; since if either (a) or (b) were not a fact, it would mean that no interval was immediate and indivisible, but that all intervals were divisible. This is true because a conclusion is demonstrated by the interposition, not the apposition, of a fresh term. If such interposition could continue to infinity there might be an infinite number of terms between any two terms; but this is impossible if both the ascending and descending series of predication terminate; and of this fact, which before was shown dialectically, analytic proof has now been given.
23
It is an evident corollary of these conclusions that if the same attribute A inheres in two terms C and D predicable either not at all, or not of all instances, of one another, it does not always belong to them in virtue of a common middle term. Isosceles and scalene possess the attribute of having their angles equal to two right angles in virtue of a common middle; for they possess it in so far as they are both a certain kind of figure, and not in so far as they differ from one another. But this is not always the case: for, were it so, if we take B as the common middle in virtue of which A inheres in C and D, clearly B would inhere in C and D through a second common middle, and this in turn would inhere in C and D through a third, so that between two terms an infinity of intermediates would fall-an impossibility. Thus it need not always be in virtue of a common middle term that a single attribute inheres in several subjects, since there must be immediate intervals. Yet if the attribute to be proved common to two subjects is to be one of their essential attributes, the middle terms involved must be within one subject genus and be derived from the same group of immediate premisses; for we have seen that processes of proof cannot pass from one genus to another.
It is also clear that when A inheres in B, this can be demonstrated if there is a middle term. Further, the ‘elements’ of such a conclusion are the premisses containing the middle in question, and they are identical in number with the middle terms, seeing that the immediate propositions-or at least such immediate propositions as are universal-are the ‘elements’. If, on the other hand, there is no middle term, demonstration ceases to be possible: we are on the way to the basic truths. Similarly if A does not inhere in B, this can be demonstrated if there is a middle term or a term prior to B in which A does not inhere: otherwise there is no demonstration and a basic truth is reached. There are, moreover, as many ‘elements’ of the demonstrated conclusion as there are middle terms, since it is propositions containing these middle terms that are the basic premisses on which the demonstration rests; and as there are some indemonstrable basic truths asserting that ‘this is that’ or that ‘this inheres in that’, so there are others denying that ‘this is that’ or that ‘this inheres in that’-in fact some basic truths will affirm and some will deny being.
When we are to prove a conclusion, we must take a primary essential predicate-suppose it C-of the subject B, and then suppose A similarly predicable of C. If we proceed in this manner, no proposition or attribute