Aristotle: The Complete Works. Aristotle . Читать онлайн. Newlib. NEWLIB.NET

Автор: Aristotle
Издательство: Bookwire
Серия:
Жанр произведения: Юриспруденция, право
Год издания: 0
isbn: 9782380372410
Скачать книгу
between the extremes take the terms science, line, medicine: of a negative relation science, line, unit.

      If then the terms are universally related, it is clear in this figure when a syllogism will be possible and when not, and that if a syllogism is possible the terms must be related as described, and if they are so related there will be a syllogism.

      But if one term is related universally, the other in part only, to its subject, there must be a perfect syllogism whenever universality is posited with reference to the major term either affirmatively or negatively, and particularity with reference to the minor term affirmatively: but whenever the universality is posited in relation to the minor term, or the terms are related in any other way, a syllogism is impossible. I call that term the major in which the middle is contained and that term the minor which comes under the middle. Let all B be A and some C be B. Then if ‘predicated of all’ means what was said above, it is necessary that some C is A. And if no B is A but some C is B, it is necessary that some C is not A. The meaning of ‘predicated of none’ has also been defined. So there will be a perfect syllogism. This holds good also if the premiss BC should be indefinite, provided that it is affirmative: for we shall have the same syllogism whether the premiss is indefinite or particular.

      But if the universality is posited with respect to the minor term either affirmatively or negatively, a syllogism will not be possible, whether the major premiss is positive or negative, indefinite or particular: e.g. if some B is or is not A, and all C is B. As an example of a positive relation between the extremes take the terms good, state, wisdom: of a negative relation, good, state, ignorance. Again if no C is B, but some B is or is not A or not every B is A, there cannot be a syllogism. Take the terms white, horse, swan: white, horse, raven. The same terms may be taken also if the premiss BA is indefinite.

      Nor when the major premiss is universal, whether affirmative or negative, and the minor premiss is negative and particular, can there be a syllogism, whether the minor premiss be indefinite or particular: e.g. if all B is A and some C is not B, or if not all C is B. For the major term may be predicable both of all and of none of the minor, to some of which the middle term cannot be attributed. Suppose the terms are animal, man, white: next take some of the white things of which man is not predicated-swan and snow: animal is predicated of all of the one, but of none of the other. Consequently there cannot be a syllogism. Again let no B be A, but let some C not be B. Take the terms inanimate, man, white: then take some white things of which man is not predicated-swan and snow: the term inanimate is predicated of all of the one, of none of the other.

      Further since it is indefinite to say some C is not B, and it is true that some C is not B, whether no C is B, or not all C is B, and since if terms are assumed such that no C is B, no syllogism follows (this has already been stated) it is clear that this arrangement of terms will not afford a syllogism: otherwise one would have been possible with a universal negative minor premiss. A similar proof may also be given if the universal premiss is negative.

      Nor can there in any way be a syllogism if both the relations of subject and predicate are particular, either positively or negatively, or the one negative and the other affirmative, or one indefinite and the other definite, or both indefinite. Terms common to all the above are animal, white, horse: animal, white, stone.

      It is clear then from what has been said that if there is a syllogism in this figure with a particular conclusion, the terms must be related as we have stated: if they are related otherwise, no syllogism is possible anyhow. It is evident also that all the syllogisms in this figure are perfect (for they are all completed by means of the premisses originally taken) and that all conclusions are proved by this figure, viz. universal and particular, affirmative and negative. Such a figure I call the first.

      Whenever the same thing belongs to all of one subject, and to none of another, or to all of each subject or to none of either, I call such a figure the second; by middle term in it I mean that which is predicated of both subjects, by extremes the terms of which this is said, by major extreme that which lies near the middle, by minor that which is further away from the middle. The middle term stands outside the extremes, and is first in position. A syllogism cannot be perfect anyhow in this figure, but it may be valid whether the terms are related universally or not.

      If then the terms are related universally a syllogism will be possible, whenever the middle belongs to all of one subject and to none of another (it does not matter which has the negative relation), but in no other way. Let M be predicated of no N, but of all O. Since, then, the negative relation is convertible, N will belong to no M: but M was assumed to belong to all O: consequently N will belong to no O. This has already been proved. Again if M belongs to all N, but to no O, then N will belong to no O. For if M belongs to no O, O belongs to no M: but M (as was said) belongs to all N: O then will belong to no N: for the first figure has again been formed. But since the negative relation is convertible, N will belong to no O. Thus it will be the same syllogism that proves both conclusions.

      It is possible to prove these results also by reductio ad impossibile.

      It is clear then that a syllogism is formed when the terms are so related, but not a perfect syllogism; for necessity is not perfectly established merely from the original premisses; others also are needed.

      But if M is predicated of every N and O, there cannot be a syllogism. Terms to illustrate a positive relation between the extremes are substance, animal, man; a negative relation, substance, animal, number-substance being the middle term.

      Nor is a syllogism possible when M is predicated neither of any N nor of any O. Terms to illustrate a positive relation are line, animal, man: a negative relation, line, animal, stone.

      It is clear then that if a syllogism is formed when the terms are universally related, the terms must be related as we stated at the outset: for if they are otherwise related no necessary consequence follows.

      If the middle term is related universally to one of the extremes, a particular negative syllogism must result whenever the middle term is related universally to the major whether positively or negatively, and particularly to the minor and in a manner opposite to that of the universal statement: by ‘an opposite manner’ I mean, if the universal statement is negative, the particular is affirmative: if the universal is affirmative, the particular is negative. For if M belongs to no N, but to some O, it is necessary that N does not belong to some O. For since the negative statement is convertible, N will belong to no M: but M was admitted to belong to some O: therefore N will not belong to some O: for the result is reached by means of the first figure. Again if M belongs to all N, but not to some O, it is necessary that N does not belong to some O: for if N belongs to all O, and M is predicated also of all N, M must belong to all O: but we assumed that M does not belong to some O. And if M belongs to all N but not to all O, we shall conclude that N does not belong to all O: the proof is the same as the above. But if M is predicated of all O, but not of all N, there will be no syllogism. Take the terms animal, substance, raven; animal, white, raven. Nor will there be a conclusion when M is predicated of no O, but of some N. Terms to illustrate a positive relation between the extremes are animal, substance, unit: a negative relation, animal, substance, science.

      If then the universal statement is opposed to the particular, we have stated when a syllogism will be possible and when not: but if the premisses are similar in form, I mean both negative or both affirmative, a syllogism will not be possible anyhow. First let them be negative, and let the major premiss be universal, e.g. let M belong to no N, and not to some O. It is possible then for N to belong either to all O or to no O. Terms to illustrate the negative relation are black, snow, animal. But it is not possible to find terms of which the extremes are related positively and universally, if M belongs to some O, and does not belong to some O. For if N belonged to all O, but M to no N, then M would belong to no O: but we assumed that it belongs to some O. In this way then it is not admissible to take terms: our point must be proved from the indefinite nature of the particular statement. For since it is true that M does not belong to some O, even if it belongs to no O, and since if it belongs to no O a syllogism is (as we have seen) not possible, clearly it will not be possible now either.

      Again let the premisses be affirmative,